These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 19328185)
1. Role of individual R domain phosphorylation sites in CFTR regulation by protein kinase A. Hegedus T; Aleksandrov A; Mengos A; Cui L; Jensen TJ; Riordan JR Biochim Biophys Acta; 2009 Jun; 1788(6):1341-9. PubMed ID: 19328185 [TBL] [Abstract][Full Text] [Related]
2. Regulation of recombinant cardiac cystic fibrosis transmembrane conductance regulator chloride channels by protein kinase C. Yamazaki J; Britton F; Collier ML; Horowitz B; Hume JR Biophys J; 1999 Apr; 76(4):1972-87. PubMed ID: 10096895 [TBL] [Abstract][Full Text] [Related]
3. Protein kinase A phosphorylation potentiates cystic fibrosis transmembrane conductance regulator gating by relieving autoinhibition on the stimulatory C terminus of the regulatory domain. Chen JH J Biol Chem; 2020 Apr; 295(14):4577-4590. PubMed ID: 32102849 [TBL] [Abstract][Full Text] [Related]
4. Preferential phosphorylation of R-domain Serine 768 dampens activation of CFTR channels by PKA. Csanády L; Seto-Young D; Chan KW; Cenciarelli C; Angel BB; Qin J; McLachlin DT; Krutchinsky AN; Chait BT; Nairn AC; Gadsby DC J Gen Physiol; 2005 Feb; 125(2):171-86. PubMed ID: 15657296 [TBL] [Abstract][Full Text] [Related]
5. The major cystic fibrosis causing mutation exhibits defective propensity for phosphorylation. Pasyk S; Molinski S; Ahmadi S; Ramjeesingh M; Huan LJ; Chin S; Du K; Yeger H; Taylor P; Moran MF; Bear CE Proteomics; 2015 Jan; 15(2-3):447-61. PubMed ID: 25330774 [TBL] [Abstract][Full Text] [Related]
6. Protein kinase A regulates ATP hydrolysis and dimerization by a CFTR (cystic fibrosis transmembrane conductance regulator) domain. Howell LD; Borchardt R; Kole J; Kaz AM; Randak C; Cohn JA Biochem J; 2004 Feb; 378(Pt 1):151-9. PubMed ID: 14602047 [TBL] [Abstract][Full Text] [Related]
7. Influence of phosphorylation by protein kinase A on CFTR at the cell surface and endoplasmic reticulum. Seibert FS; Chang XB; Aleksandrov AA; Clarke DM; Hanrahan JW; Riordan JR Biochim Biophys Acta; 1999 Dec; 1461(2):275-83. PubMed ID: 10581361 [TBL] [Abstract][Full Text] [Related]
8. Functional roles of nonconserved structural segments in CFTR's NH2-terminal nucleotide binding domain. Csanády L; Chan KW; Nairn AC; Gadsby DC J Gen Physiol; 2005 Jan; 125(1):43-55. PubMed ID: 15596536 [TBL] [Abstract][Full Text] [Related]
10. Stimulation of CFTR activity by its phosphorylated R domain. Winter MC; Welsh MJ Nature; 1997 Sep; 389(6648):294-6. PubMed ID: 9305845 [TBL] [Abstract][Full Text] [Related]
11. Removal of the Fe(iii) site promotes activation of the human cystic fibrosis transmembrane conductance regulator by high-affinity Zn(ii) binding. Wang G Metallomics; 2018 Feb; 10(2):240-247. PubMed ID: 29372915 [TBL] [Abstract][Full Text] [Related]
12. A short segment of the R domain of cystic fibrosis transmembrane conductance regulator contains channel stimulatory and inhibitory activities that are separable by sequence modification. Xie J; Adams LM; Zhao J; Gerken TA; Davis PB; Ma J J Biol Chem; 2002 Jun; 277(25):23019-27. PubMed ID: 11950844 [TBL] [Abstract][Full Text] [Related]
13. Regulation of the cystic fibrosis transmembrane conductance regulator Cl- channel by negative charge in the R domain. Rich DP; Berger HA; Cheng SH; Travis SM; Saxena M; Smith AE; Welsh MJ J Biol Chem; 1993 Sep; 268(27):20259-67. PubMed ID: 7690753 [TBL] [Abstract][Full Text] [Related]
14. Simple binding of protein kinase A prior to phosphorylation allows CFTR anion channels to be opened by nucleotides. Mihályi C; Iordanov I; Töröcsik B; Csanády L Proc Natl Acad Sci U S A; 2020 Sep; 117(35):21740-21746. PubMed ID: 32817533 [TBL] [Abstract][Full Text] [Related]
15. The inhibition mechanism of non-phosphorylated Ser768 in the regulatory domain of cystic fibrosis transmembrane conductance regulator. Wang G J Biol Chem; 2011 Jan; 286(3):2171-82. PubMed ID: 21059651 [TBL] [Abstract][Full Text] [Related]
16. Phosphorylation of protein kinase C sites in NBD1 and the R domain control CFTR channel activation by PKA. Chappe V; Hinkson DA; Zhu T; Chang XB; Riordan JR; Hanrahan JW J Physiol; 2003 Apr; 548(Pt 1):39-52. PubMed ID: 12588899 [TBL] [Abstract][Full Text] [Related]
17. cAMP-dependent protein kinase-mediated phosphorylation of cystic fibrosis transmembrane conductance regulator residue Ser-753 and its role in channel activation. Seibert FS; Tabcharani JA; Chang XB; Dulhanty AM; Mathews C; Hanrahan JW; Riordan JR J Biol Chem; 1995 Feb; 270(5):2158-62. PubMed ID: 7530719 [TBL] [Abstract][Full Text] [Related]
18. Identification of protein kinase A phosphorylation sites on NBD1 and R domains of CFTR using electrospray mass spectrometry with selective phosphate ion monitoring. Townsend RR; Lipniunas PH; Tulk BM; Verkman AS Protein Sci; 1996 Sep; 5(9):1865-73. PubMed ID: 8880910 [TBL] [Abstract][Full Text] [Related]
19. Gating of CFTR by the STAS domain of SLC26 transporters. Ko SB; Zeng W; Dorwart MR; Luo X; Kim KH; Millen L; Goto H; Naruse S; Soyombo A; Thomas PJ; Muallem S Nat Cell Biol; 2004 Apr; 6(4):343-50. PubMed ID: 15048129 [TBL] [Abstract][Full Text] [Related]
20. AMP-activated protein kinase phosphorylation of the R domain inhibits PKA stimulation of CFTR. King JD; Fitch AC; Lee JK; McCane JE; Mak DO; Foskett JK; Hallows KR Am J Physiol Cell Physiol; 2009 Jul; 297(1):C94-101. PubMed ID: 19419994 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]