These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

816 related articles for article (PubMed ID: 19328213)

  • 1. Methamphetamine toxicity and messengers of death.
    Krasnova IN; Cadet JL
    Brain Res Rev; 2009 May; 60(2):379-407. PubMed ID: 19328213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neurotoxicity of methamphetamine: Main effects and mechanisms.
    Jayanthi S; Daiwile AP; Cadet JL
    Exp Neurol; 2021 Oct; 344():113795. PubMed ID: 34186102
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Role of α-Synuclein in Methamphetamine-Induced Neurotoxicity.
    Wu M; Su H; Zhao M
    Neurotox Res; 2021 Jun; 39(3):1007-1021. PubMed ID: 33555547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neurotoxicity of substituted amphetamines: molecular and cellular mechanisms.
    Cadet JL; Krasnova IN; Jayanthi S; Lyles J
    Neurotox Res; 2007 Apr; 11(3-4):183-202. PubMed ID: 17449459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methamphetamine oxidative stress, neurotoxicity, and functional deficits are modulated by nuclear factor-E2-related factor 2.
    Ramkissoon A; Wells PG
    Free Radic Biol Med; 2015 Dec; 89():358-68. PubMed ID: 26427884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neurotoxicity of methamphetamine and 3,4-methylenedioxymethamphetamine.
    Halpin LE; Collins SA; Yamamoto BK
    Life Sci; 2014 Feb; 97(1):37-44. PubMed ID: 23892199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methamphetamine neurotoxicity, microglia, and neuroinflammation.
    Shaerzadeh F; Streit WJ; Heysieattalab S; Khoshbouei H
    J Neuroinflammation; 2018 Dec; 15(1):341. PubMed ID: 30541633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methamphetamine-induced neurotoxicity and microglial activation are not mediated by fractalkine receptor signaling.
    Thomas DM; Francescutti-Verbeem DM; Kuhn DM
    J Neurochem; 2008 Jul; 106(2):696-705. PubMed ID: 18410508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pharmacological activation of the neurotensin receptor 1 abrogates the methamphetamine-induced striatal apoptosis in the mouse brain.
    Liu Q; Hazan A; Grinman E; Angulo JA
    Brain Res; 2017 Mar; 1659():148-155. PubMed ID: 28130052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overview of blood-brain barrier dysfunction in methamphetamine abuse.
    Pang L; Wang Y
    Biomed Pharmacother; 2023 May; 161():114478. PubMed ID: 37002574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methamphetamine- and trauma-induced brain injuries: comparative cellular and molecular neurobiological substrates.
    Gold MS; Kobeissy FH; Wang KK; Merlo LJ; Bruijnzeel AW; Krasnova IN; Cadet JL
    Biol Psychiatry; 2009 Jul; 66(2):118-27. PubMed ID: 19345341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rodent Models of Methamphetamine Misuse: Mechanisms of Methamphetamine Action and Comparison of Different Rodent Paradigms.
    Hasan H; Abdelhady S; Haidar M; Fakih C; El Hayek S; Mondello S; Kobeissy FH; Shaito A
    Methods Mol Biol; 2019; 2011():221-250. PubMed ID: 31273702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CM156, a high affinity sigma ligand, attenuates the stimulant and neurotoxic effects of methamphetamine in mice.
    Kaushal N; Seminerio MJ; Shaikh J; Medina MA; Mesangeau C; Wilson LL; McCurdy CR; Matsumoto RR
    Neuropharmacology; 2011; 61(5-6):992-1000. PubMed ID: 21762711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neurotoxic-related changes in tyrosine hydroxylase, microglia, myelin, and the blood-brain barrier in the caudate-putamen from acute methamphetamine exposure.
    Bowyer JF; Robinson B; Ali S; Schmued LC
    Synapse; 2008 Mar; 62(3):193-204. PubMed ID: 18081184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Causes and consequences of methamphetamine and MDMA toxicity.
    Quinton MS; Yamamoto BK
    AAPS J; 2006 May; 8(2):E337-47. PubMed ID: 16796384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Speed kills: cellular and molecular bases of methamphetamine-induced nerve terminal degeneration and neuronal apoptosis.
    Cadet JL; Jayanthi S; Deng X
    FASEB J; 2003 Oct; 17(13):1775-88. PubMed ID: 14519657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Drugs of abuse-induced hyperthermia, blood-brain barrier dysfunction and neurotoxicity: neuroprotective effects of a new antioxidant compound H-290/51.
    Sharma HS; Sjöquist PO; Ali SF
    Curr Pharm Des; 2007; 13(18):1903-23. PubMed ID: 17584116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Augmentation of methamphetamine-induced toxicity in the rat striatum by unpredictable stress: contribution of enhanced hyperthermia.
    Tata DA; Raudensky J; Yamamoto BK
    Eur J Neurosci; 2007 Aug; 26(3):739-48. PubMed ID: 17686046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular mechanisms and treatment strategies for methamphetamine‑induced neurodegeneration, inflammation and neurotoxicity.
    Omidvari S; Azimzadeh Z; Rashnoo F; Tahmasebinia F; Keramatinia A; Roozbahany NA; Abbaszadeh HA; Darabi S
    Acta Neurobiol Exp (Wars); 2023 Dec; 83(4):414-431. PubMed ID: 38224280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Breakdown of Blood-Brain and Blood-Spinal Cord Barriers During Acute Methamphetamine Intoxication: Role of Brain Temperature.
    Kiyatkin EA; Sharma HS
    CNS Neurol Disord Drug Targets; 2016; 15(9):1129-1138. PubMed ID: 27658516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 41.