BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 19328517)

  • 1. Experimental assessment and modelling of the proton production linked to phosphorus release and uptake in EBPR systems.
    Marcelino M; Guisasola A; Baeza JA
    Water Res; 2009 May; 43(9):2431-40. PubMed ID: 19328517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison between UCT type and DPAO biomass phosphorus removal efficiency under aerobic and anoxic conditions.
    Kapagiannidis AG; Zafiriadis I; Aivasidis A
    Water Sci Technol; 2009; 60(10):2695-703. PubMed ID: 19923776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of temperature, pH and dissolved oxygen concentration on enhanced biological phosphorus removal under strictly aerobic conditions.
    Nittami T; Oi H; Matsumoto K; Seviour RJ
    N Biotechnol; 2011 Dec; 29(1):2-8. PubMed ID: 21718809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioenergetic models for acetate and phosphate transport in bacteria important in enhanced biological phosphorus removal.
    Burow LC; Mabbett AN; McEwan AG; Bond PL; Blackall LL
    Environ Microbiol; 2008 Jan; 10(1):87-98. PubMed ID: 18211269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anaerobic glyoxylate cycle activity during simultaneous utilization of glycogen and acetate in uncultured Accumulibacter enriched in enhanced biological phosphorus removal communities.
    Burow LC; Mabbett AN; Blackall LL
    ISME J; 2008 Oct; 2(10):1040-51. PubMed ID: 18784756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of polyhydroxybutyrate by activated sludge performing enhanced biological phosphorus removal.
    Rodgers M; Wu G
    Bioresour Technol; 2010 Feb; 101(3):1049-53. PubMed ID: 19765985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced biological phosphorus removal in a sequencing batch reactor using propionate as the sole carbon source.
    Pijuan M; Saunders AM; Guisasola A; Baeza JA; Casas C; Blackall LL
    Biotechnol Bioeng; 2004 Jan; 85(1):56-67. PubMed ID: 14705012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of pH on biological phosphorus uptake.
    Serralta J; Ferrer J; BorrĂ¡s L; Seco A
    Biotechnol Bioeng; 2006 Dec; 95(5):875-82. PubMed ID: 16958137
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aerobic phosphorus release linked to acetate uptake in bio-P sludge: process modeling using oxygen uptake rate.
    Guisasola A; Pijuan M; Baeza JA; Carrera J; Casas C; Lafuente J
    Biotechnol Bioeng; 2004 Mar; 85(7):722-33. PubMed ID: 14991650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endogenous metabolism of Candidatus Accumulibacter phosphatis under various starvation conditions.
    Lu H; Keller J; Yuan Z
    Water Res; 2007 Dec; 41(20):4646-56. PubMed ID: 17658580
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of basic operating parameters on biological phosphorus removal in a continuous-flow anaerobic-anoxic activated sludge system.
    Kapagiannidis AG; Zafiriadis I; Aivasidis A
    Bioprocess Biosyst Eng; 2012 Mar; 35(3):371-82. PubMed ID: 21796365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Could polyphosphate-accumulating organisms (PAOs) be glycogen-accumulating organisms (GAOs)?
    Zhou Y; Pijuan M; Zeng RJ; Lu H; Yuan Z
    Water Res; 2008 May; 42(10-11):2361-8. PubMed ID: 18222522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accumulibacter clades Type I and II performing kinetically different glycogen-accumulating organisms metabolisms for anaerobic substrate uptake.
    Welles L; Tian WD; Saad S; Abbas B; Lopez-Vazquez CM; Hooijmans CM; van Loosdrecht MC; Brdjanovic D
    Water Res; 2015 Oct; 83():354-66. PubMed ID: 26189167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radiolabelled proteomics to determine differential functioning of Accumulibacter during the anaerobic and aerobic phases of a bioreactor operating for enhanced biological phosphorus removal.
    Wexler M; Richardson DJ; Bond PL
    Environ Microbiol; 2009 Dec; 11(12):3029-44. PubMed ID: 19650829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An evaluation of the phosphorus storage capacity of an anaerobic/aerobic sequential batch biofilm reactor.
    Chiou RJ; Yang YR
    Bioresour Technol; 2008 Jul; 99(10):4408-13. PubMed ID: 17911012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental considerations on monitoring ORP, pH, conductivity and dissolved oxygen in nitrogen and phosphorus biological removal processes.
    Spagni A; Buday J; Ratini P; Bortone G
    Water Sci Technol; 2001; 43(11):197-204. PubMed ID: 11443963
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Net P-removal deterioration in enriched PAO sludge subjected to permanent aerobic conditions.
    Pijuan M; Guisasola A; Baeza JA; Carrera J; Casas C; Lafuente J
    J Biotechnol; 2006 May; 123(1):117-26. PubMed ID: 16324760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomass granulation in an aerobic:anaerobic-enhanced biological phosphorus removal process in a sequencing batch reactor with varying pH.
    Ahn J; McIlroy S; Schroeder S; Seviour R
    J Ind Microbiol Biotechnol; 2009 Jul; 36(7):885-93. PubMed ID: 19350296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and comparison of aerobic and denitrifying polyphosphate-accumulating organisms.
    Zeng RJ; Saunders AM; Yuan Z; Blackall LL; Keller J
    Biotechnol Bioeng; 2003 Jul; 83(2):140-8. PubMed ID: 12768619
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metatranscriptomic array analysis of 'Candidatus Accumulibacter phosphatis'-enriched enhanced biological phosphorus removal sludge.
    He S; Kunin V; Haynes M; Martin HG; Ivanova N; Rohwer F; Hugenholtz P; McMahon KD
    Environ Microbiol; 2010 May; 12(5):1205-17. PubMed ID: 20148930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.