These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 19328691)

  • 1. Catalyst-free tandem aldol condensation/Michael addition of 1,3-cyclohexanediones with enolizable aldehydes.
    Rohr K; Mahrwald R
    Bioorg Med Chem Lett; 2009 Jul; 19(14):3949-51. PubMed ID: 19328691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid access to the Welwitindolinone alkaloid skeleton by cyclization of indolecarboxaldehyde substituted cyclohexanones.
    Baudoux J; Blake AJ; Simpkins NS
    Org Lett; 2005 Sep; 7(19):4087-9. PubMed ID: 16146358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amphoteric amino aldehydes reroute the aza-Michael reaction.
    Hili R; Yudin AK
    J Am Chem Soc; 2009 Nov; 131(45):16404-6. PubMed ID: 19856916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An organocatalytic approach to enantiomerically enriched α-arylcyclohexenones and cyclohexanones.
    Duce S; Jorge M; Alonso I; García Ruano JL; Cid MB
    Org Biomol Chem; 2011 Dec; 9(24):8253-60. PubMed ID: 22041709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of aldol reaction pathways of enolizable aldehydes in an aqueous environment with a hyperbranched polymeric catalyst.
    Chi Y; Scroggins ST; Boz E; Fréchet JM
    J Am Chem Soc; 2008 Dec; 130(51):17287-9. PubMed ID: 19032033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Asymmetric tandem Michael addition-Wittig reaction to cyclohexenone annulation.
    Liu YK; Ma C; Jiang K; Liu TY; Chen YC
    Org Lett; 2009 Jul; 11(13):2848-51. PubMed ID: 19518069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of optically active 4-substituted 2-cyclohexenones.
    Houjeiry TI; Poe SL; McQuade DT
    Org Lett; 2012 Sep; 14(17):4394-7. PubMed ID: 22900684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly efficient cyanoimidation of aldehydes.
    Yin P; Ma WB; Chen Y; Huang WC; Deng Y; He L
    Org Lett; 2009 Dec; 11(23):5482-5. PubMed ID: 19943701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An efficient and scalable one-pot double Michael addition-Dieckmann condensation for the synthesis of 4,4-disubstituted cyclohexane beta-keto esters.
    DeGraffenreid MR; Bennett S; Caille S; Gonzalez-Lopez de Turiso F; Hungate RW; Julian LD; Kaizerman JA; McMinn DL; Rew Y; Sun D; Yan X; Powers JP
    J Org Chem; 2007 Sep; 72(19):7455-8. PubMed ID: 17696402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of fused tricyclic amines from enolizable acyclic aldehydes by cyclization then dipolar cycloaddition cascade: synthesis of myrioxazine A.
    Burrell AJ; Coldham I; Oram N
    Org Lett; 2009 Apr; 11(7):1515-8. PubMed ID: 19254004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alpha-alkenoyl ketene S,S-acetal-based multicomponent reaction: an efficient approach for the selective construction of polyfunctionalized cyclohexanones.
    Ma Y; Wang M; Li D; Bekturhun B; Liu J; Liu Q
    J Org Chem; 2009 Apr; 74(8):3116-21. PubMed ID: 19296593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Asymmetric acid-catalyzed Meerwein-Ponndorf-Verley-Aldol reactions of enolizable aldehydes.
    Seifert A; Scheffler U; Markert M; Mahrwald R
    Org Lett; 2010 Apr; 12(8):1660-3. PubMed ID: 20302361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A benzannulation protocol to prepare substituted aryl amines using a Michael-aldol reaction of beta-keto sulfones.
    Kiren S; Padwa A
    J Org Chem; 2009 Oct; 74(20):7781-9. PubMed ID: 19777998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and in vitro study of 14-aryl-14H-dibenzo[a.j]xanthenes as cytotoxic agents.
    Bhattacharya AK; Rana KC; Mujahid M; Sehar I; Saxena AK
    Bioorg Med Chem Lett; 2009 Oct; 19(19):5590-3. PubMed ID: 19717302
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chiral picolylamines for Michael and aldol reactions: probing substrate boundaries.
    Nugent TC; Bibi A; Sadiq A; Shoaib M; Umar MN; Tehrani FN
    Org Biomol Chem; 2012 Dec; 10(46):9287-94. PubMed ID: 23104278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthetic access to poly-substituted 6-alkoxyindoles from 1,3-cyclohexanediones and nitroolefins through facile aromatization reaction.
    Ma LJ; Li XX; Kusuyama T; El-Sayed Iel-T; Inokuchi T
    J Org Chem; 2009 Dec; 74(23):9218-21. PubMed ID: 19894747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Boron-catalyzed direct aldol reactions of pyruvic acids.
    Lee D; Newman SG; Taylor MS
    Org Lett; 2009 Dec; 11(23):5486-9. PubMed ID: 19904926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Triflimide (HNTf2)-catalyzed aldehyde cross-aldol reaction using "super silyl" enol ethers.
    Boxer MB; Yamamoto H
    Nat Protoc; 2006; 1(5):2434-8. PubMed ID: 17406488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unexpected solvent-free cycloadditions of 1,3-cyclohexanediones to 1-(pyridin-2-yl)-enones mediated by manganese(III) acetate in a ball mill.
    Wang GW; Dong YW; Wu P; Yuan TT; Shen YB
    J Org Chem; 2008 Sep; 73(18):7088-95. PubMed ID: 18710288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of immobilized L-prolinamide via enzymatic polymerization of phenolic L-prolinamide and evaluation of its catalytic performance for direct asymmetric aldol reaction.
    Qu C; Zhao W; Zhang L; Cui Y
    Chirality; 2014 Apr; 26(4):209-13. PubMed ID: 24619918
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.