BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

350 related articles for article (PubMed ID: 19328878)

  • 1. Influence of the meniscus on friction and degradation of cartilage in the natural knee joint.
    McCann L; Ingham E; Jin Z; Fisher J
    Osteoarthritis Cartilage; 2009 Aug; 17(8):995-1000. PubMed ID: 19328878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An investigation of the effect of conformity of knee hemiarthroplasty designs on contact stress, friction and degeneration of articular cartilage: a tribological study.
    McCann L; Ingham E; Jin Z; Fisher J
    J Biomech; 2009 Jun; 42(9):1326-31. PubMed ID: 19380137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simple geometry tribological study of osteochondral graft implantation in the knee.
    Bowland P; Ingham E; Fisher J; Jennings LM
    Proc Inst Mech Eng H; 2018 Mar; 232(3):249-256. PubMed ID: 29375001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of contact stress on cartilage friction, deformation and wear.
    Lizhang J; Fisher J; Jin Z; Burton A; Williams S
    Proc Inst Mech Eng H; 2011 May; 225(5):461-75. PubMed ID: 21755776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An in vitro study of cartilage-meniscus tribology to understand the changes caused by a meniscus implant.
    Majd SE; Rizqy AI; Kaper HJ; Schmidt TA; Kuijer R; Sharma PK
    Colloids Surf B Biointerfaces; 2017 Jul; 155():294-303. PubMed ID: 28437755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Meniscus Injury and its Surgical Treatment Does not Increase Initial Whole Knee Joint Friction.
    de Roy L; Warnecke D; Hacker SP; Simon U; Dürselen L; Ignatius A; Seitz AM
    Front Bioeng Biotechnol; 2021; 9():779946. PubMed ID: 34957074
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational investigation of the time-dependent contact behaviour of the human tibiofemoral joint under body weight.
    Meng Q; Jin Z; Wilcox R; Fisher J
    Proc Inst Mech Eng H; 2014 Nov; 228(11):1193-207. PubMed ID: 25500864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of two methods for calculating the frictional properties of articular cartilage using a simple pendulum and intact mouse knee joints.
    Drewniak EI; Jay GD; Fleming BC; Crisco JJ
    J Biomech; 2009 Aug; 42(12):1996-9. PubMed ID: 19632680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of continuous sliding and subsequent surface wear on the friction of articular cartilage.
    Forster H; Fisher J
    Proc Inst Mech Eng H; 1999; 213(4):329-45. PubMed ID: 10466364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Frictional properties of Hartley guinea pig knees with and without proteolytic disruption of the articular surfaces.
    Teeple E; Fleming BC; Mechrefe AP; Crisco JJ; Brady MF; Jay GD
    Osteoarthritis Cartilage; 2007 Mar; 15(3):309-15. PubMed ID: 17010648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of nominal stress on the long term friction, deformation and wear of native and glycosaminoglycan deficient articular cartilage.
    Katta J; Jin Z; Ingham E; Fisher J
    Osteoarthritis Cartilage; 2009 May; 17(5):662-8. PubMed ID: 19028431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The spatio-temporal mechanical environment of healthy and injured human cartilage during sustained activity and its role in cartilage damage.
    Miramini S; Smith DW; Zhang L; Gardiner BS
    J Mech Behav Biomed Mater; 2017 Oct; 74():1-10. PubMed ID: 28521277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of mechanical injury on the tribological rehydration and lubrication of articular cartilage.
    Farnham MS; Larson RE; Burris DL; Price C
    J Mech Behav Biomed Mater; 2020 Jan; 101():103422. PubMed ID: 31527014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation into the effect of proteoglycan molecules on the tribological properties of cartilage joint tissues.
    Pickard J; Ingham E; Egan J; Fisher J
    Proc Inst Mech Eng H; 1998; 212(3):177-82. PubMed ID: 9695636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tribology studies of the natural knee using an animal model in a new whole joint natural knee simulator.
    Liu A; Jennings LM; Ingham E; Fisher J
    J Biomech; 2015 Sep; 48(12):3004-11. PubMed ID: 26300400
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanotransduction of bovine articular cartilage superficial zone protein by transforming growth factor beta signaling.
    Neu CP; Khalafi A; Komvopoulos K; Schmid TM; Reddi AH
    Arthritis Rheum; 2007 Nov; 56(11):3706-14. PubMed ID: 17968924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of the frictional response of osteoarthritic human tibiofemoral joints and the potential beneficial tribological effect of healthy synovial fluid.
    Caligaris M; Canal CE; Ahmad CS; Gardner TR; Ateshian GA
    Osteoarthritis Cartilage; 2009 Oct; 17(10):1327-32. PubMed ID: 19410031
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [The biological role of the structural-deformable properties of the cartilage and of the synovial fluid in the reduction of intra- articular friction].
    Kupchinov BI; Ermakov SF; Rodnenkov VG; Beloenko ED
    Ortop Travmatol Protez; 1989 Oct; (10):7-11. PubMed ID: 2622643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of lubricant entrapment at biological interfaces: reduction of friction and adhesion in articular cartilage.
    Chan SM; Neu CP; Komvopoulos K; Reddi AH
    J Biomech; 2011 Jul; 44(11):2015-20. PubMed ID: 21679953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Articular cartilage MR imaging and thickness mapping of a loaded knee joint before and after meniscectomy.
    Song Y; Greve JM; Carter DR; Koo S; Giori NJ
    Osteoarthritis Cartilage; 2006 Aug; 14(8):728-37. PubMed ID: 16533610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.