These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1054 related articles for article (PubMed ID: 19329251)

  • 1. Electrochemical removal of Cr(VI) from aqueous media using iron and aluminum as electrode materials: towards a better understanding of the involved phenomena.
    Mouedhen G; Feki M; De Petris-Wery M; Ayedi HF
    J Hazard Mater; 2009 Sep; 168(2-3):983-91. PubMed ID: 19329251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of Cr(VI) from Cr-contaminated groundwater through electrochemical addition of Fe(II).
    Mukhopadhyay B; Sundquist J; Schmitz RJ
    J Environ Manage; 2007 Jan; 82(1):66-76. PubMed ID: 16545518
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of pH and chloride concentration on the removal of hexavalent chromium in a batch electrocoagulation reactor.
    Arroyo MG; Pérez-Herranz V; Montañés MT; García-Antón J; Guiñón JL
    J Hazard Mater; 2009 Sep; 169(1-3):1127-33. PubMed ID: 19464794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of Cr(VI) from polluted solutions by electrocoagulation: Modeling of experimental results using artificial neural network.
    Aber S; Amani-Ghadim AR; Mirzajani V
    J Hazard Mater; 2009 Nov; 171(1-3):484-90. PubMed ID: 19589640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of Fe(II) from tap water by electrocoagulation technique.
    Ghosh D; Solanki H; Purkait MK
    J Hazard Mater; 2008 Jun; 155(1-2):135-43. PubMed ID: 18164128
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of amorphous silica and silica sand on removal of chromium(VI) by zero-valent iron.
    Oh YJ; Song H; Shin WS; Choi SJ; Kim YH
    Chemosphere; 2007 Jan; 66(5):858-65. PubMed ID: 16872667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical removal of chromium from aqueous solutions using electrodes of stainless steel nets coated with single wall carbon nanotubes.
    Liu YX; Yuan DX; Yan JM; Li QL; Ouyang T
    J Hazard Mater; 2011 Feb; 186(1):473-80. PubMed ID: 21122989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cr(VI) and Cr(VI)-diphenylcarbazide removal from aqueous solutions using an iron rotating disc electrode.
    Campos E; Barrera-Díaz C; Ureña-Núñez F; Palomar-Pardavé M
    Environ Technol; 2007 Jan; 28(1):1-9. PubMed ID: 17283943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arsenic removal by electrocoagulation using combined Al-Fe electrode system and characterization of products.
    Gomes JA; Daida P; Kesmez M; Weir M; Moreno H; Parga JR; Irwin G; McWhinney H; Grady T; Peterson E; Cocke DL
    J Hazard Mater; 2007 Jan; 139(2):220-31. PubMed ID: 17113227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of Cr3+ by electrocoagulation with multiple electrodes: bipolar and monopolar configurations.
    Golder AK; Samanta AN; Ray S
    J Hazard Mater; 2007 Mar; 141(3):653-61. PubMed ID: 16938395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of chromium from Cr(VI) polluted wastewaters by reduction with scrap iron and subsequent precipitation of resulted cations.
    Gheju M; Balcu I
    J Hazard Mater; 2011 Nov; 196():131-8. PubMed ID: 21955659
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Treatment of As(V) and As(III) by electrocoagulation using Al and Fe electrode.
    Kuan WH; Hu CY; Chiang MC
    Water Sci Technol; 2009; 60(5):1341-6. PubMed ID: 19717922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of complex reagents on removal of chromium(VI) by zero-valent iron.
    Zhou H; He Y; Lan Y; Mao J; Chen S
    Chemosphere; 2008 Jun; 72(6):870-4. PubMed ID: 18486963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics of hexavalent chromium removal from water by chitosan-Fe0 nanoparticles.
    Geng B; Jin Z; Li T; Qi X
    Chemosphere; 2009 May; 75(6):825-30. PubMed ID: 19217139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hexavalent chromium reduction with scrap iron in continuous-flow system Part 1: effect of feed solution pH.
    Gheju M; Iovi A; Balcu I
    J Hazard Mater; 2008 May; 153(1-2):655-62. PubMed ID: 17933460
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduction and immobilization of hexavalent chromium with coal- and humate-based sorbents.
    Janos P; Hůla V; Bradnová P; Pilarová V; Sedlbauer J
    Chemosphere; 2009 May; 75(6):732-8. PubMed ID: 19215962
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of Zn(II), Cu(II), Ni(II), Ag(I) and Cr(VI) present in aqueous solutions by aluminium electrocoagulation.
    Heidmann I; Calmano W
    J Hazard Mater; 2008 Apr; 152(3):934-41. PubMed ID: 17854991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of iron in hexavalent chromium reduction by municipal landfill leachate.
    Li Y; Low GK; Scott JA; Amal R
    J Hazard Mater; 2009 Jan; 161(2-3):657-62. PubMed ID: 18486329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous photocatalytic reduction of Cr(VI) and oxidation of bisphenol A induced by Fe(III)-OH complexes in water.
    Liu Y; Deng L; Chen Y; Wu F; Deng N
    J Hazard Mater; 2007 Jan; 139(2):399-402. PubMed ID: 16844289
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance evaluation of granular iron for removing hexavalent chromium under different geochemical conditions.
    Jeen SW; Blowes DW; Gillham RW
    J Contam Hydrol; 2008 Jan; 95(1-2):76-91. PubMed ID: 17913283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 53.