BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

379 related articles for article (PubMed ID: 19329563)

  • 1. Analysis of acyl fluxes through multiple pathways of triacylglycerol synthesis in developing soybean embryos.
    Bates PD; Durrett TP; Ohlrogge JB; Pollard M
    Plant Physiol; 2009 May; 150(1):55-72. PubMed ID: 19329563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Labelling of glycerolipids in the cotyledons of developing oilseeds by [1-14C] acetate and [2-3H] glycerol.
    Slack CR; Roughan PG; Balasingham N
    Biochem J; 1978 Feb; 170(2):421-33. PubMed ID: 580379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phospholipase Dζ Enhances Diacylglycerol Flux into Triacylglycerol.
    Yang W; Wang G; Li J; Bates PD; Wang X; Allen DK
    Plant Physiol; 2017 May; 174(1):110-123. PubMed ID: 28325849
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of triacylglycerol biosynthesis in embryos and microsomal preparations from the developing seeds of Cuphea lanceolata.
    Bafor M; Jonsson L; Stobart AK; Stymne S
    Biochem J; 1990 Nov; 272(1):31-8. PubMed ID: 2264835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The acylation of sn-glycerol 3-phosphate and the metabolism of phosphatidate in microsomal preparations from the developing cotyledons of safflower (Carthamus tinctorius L.) seed.
    Griffiths G; Stobart AK; Stymne S
    Biochem J; 1985 Sep; 230(2):379-88. PubMed ID: 4052051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Incorporation of newly synthesized fatty acids into cytosolic glycerolipids in pea leaves occurs via acyl editing.
    Bates PD; Ohlrogge JB; Pollard M
    J Biol Chem; 2007 Oct; 282(43):31206-16. PubMed ID: 17728247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The pathway of triacylglycerol synthesis through phosphatidylcholine in Arabidopsis produces a bottleneck for the accumulation of unusual fatty acids in transgenic seeds.
    Bates PD; Browse J
    Plant J; 2011 Nov; 68(3):387-99. PubMed ID: 21711402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic complexities of triacylglycerol accumulation in developing embryos from Camelina sativa provide evidence for multiple biosynthetic systems.
    Pollard M; Shachar-Hill Y
    J Biol Chem; 2022 Jan; 298(1):101396. PubMed ID: 34774796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acyl editing and headgroup exchange are the major mechanisms that direct polyunsaturated fatty acid flux into triacylglycerols.
    Bates PD; Fatihi A; Snapp AR; Carlsson AS; Browse J; Lu C
    Plant Physiol; 2012 Nov; 160(3):1530-9. PubMed ID: 22932756
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The interconversion of diacylglycerol and phosphatidylcholine during triacylglycerol production in microsomal preparations of developing cotyledons of safflower (Carthamus tinctorius L.).
    Stobart AK; Stymne S
    Biochem J; 1985 Nov; 232(1):217-21. PubMed ID: 4084230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Triacsin C blocks de novo synthesis of glycerolipids and cholesterol esters but not recycling of fatty acid into phospholipid: evidence for functionally separate pools of acyl-CoA.
    Igal RA; Wang P; Coleman RA
    Biochem J; 1997 Jun; 324 ( Pt 2)(Pt 2):529-34. PubMed ID: 9182714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The phosphatidylcholine diacylglycerol cholinephosphotransferase is required for efficient hydroxy fatty acid accumulation in transgenic Arabidopsis.
    Hu Z; Ren Z; Lu C
    Plant Physiol; 2012 Apr; 158(4):1944-54. PubMed ID: 22371508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sn-2-monoacylglycerol, not glycerol, is preferentially utilised for triacylglycerol and phosphatidylcholine biosynthesis in Atlantic salmon (Salmo salar L.) intestine.
    Oxley A; Jutfelt F; Sundell K; Olsen RE
    Comp Biochem Physiol B Biochem Mol Biol; 2007 Jan; 146(1):115-23. PubMed ID: 17126582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lipid labeling from acetate or glycerol in cultured embryos of Camelina sativa seeds: A tale of two substrates.
    Pollard M; Delamarter D; Martin TM; Shachar-Hill Y
    Phytochemistry; 2015 Oct; 118():192-203. PubMed ID: 26265565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of cytosolic triacylglycerol hydrolysis products and of exogenous fatty acid for the synthesis of triacylglycerol secreted by cultured rat hepatocytes.
    Lankester DL; Brown AM; Zammit VA
    J Lipid Res; 1998 Sep; 39(9):1889-95. PubMed ID: 9741702
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    Kotapati HK; Bates PD
    Methods Mol Biol; 2021; 2295():59-80. PubMed ID: 34047972
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 1-Acyl-sn-glycerol-3-phosphate acyltransferase in maturing safflower seeds and its contribution to the non-random fatty acid distribution of triacylglycerol.
    Ichihara K; Asahi T; Fujii S
    Eur J Biochem; 1987 Sep; 167(2):339-47. PubMed ID: 3622518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The biosynthesis of triacylglycerols in microsomal preparations of developing cotyledons of sunflower (Helianthus annuus L.).
    Stymne S; Stobart AK
    Biochem J; 1984 Jun; 220(2):481-8. PubMed ID: 6743281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of trilaurin by developing pisa seeds (Actinodaphne hookeri).
    Sreenivas A; Sastry PS
    Arch Biochem Biophys; 1994 Jun; 311(2):229-34. PubMed ID: 8203885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of a Lychee
    Yu XH; Cai Y; Chai J; Schwender J; Shanklin J
    Plant Physiol; 2019 Jul; 180(3):1351-1361. PubMed ID: 31123096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.