BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 19329674)

  • 1. Pigment-based identification of ozone-damaged pine needles as a basis for spectral segregation of needle conditions.
    Di Vittorio AV
    J Environ Qual; 2009; 38(3):855-67. PubMed ID: 19329674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isozyme markers associated with O(3) tolerance indicate shift in genetic structure of ponderosa and Jeffrey pine in Sequoia National Park, California.
    Staszak J; Grulke NE; Marrett MJ; Prus-Glowacki W
    Environ Pollut; 2007 Oct; 149(3):366-75. PubMed ID: 17698266
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chloroplastic responses of ponderosa pine (Pinus ponderosa) seedlings to ozone exposure.
    Anderson PD; Palmer B; Houpis JL; Smith MK; Pushnik JC
    Environ Int; 2003 Jun; 29(2-3):407-13. PubMed ID: 12676234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of body condition on consumption of pine needles (Pinus ponderosa) by beef cows.
    Pfister JA; Panter KE; Gardner DR; Cook D; Welch KD
    J Anim Sci; 2008 Dec; 86(12):3608-16. PubMed ID: 18641173
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antioxidants and protective pigments of Pinus ponderosa needles at gradients of natural stresses and ozone in the San Bernardino Mountains in California.
    Tausz M; Bytnerowicz A; Arbaugh MJ; Weidner W; Grill D
    Free Radic Res; 1999 Dec; 31 Suppl():S113-20. PubMed ID: 10694049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tropospheric ozone reduces carbon assimilation in trees: estimates from analysis of continuous flux measurements.
    Fares S; Vargas R; Detto M; Goldstein AH; Karlik J; Paoletti E; Vitale M
    Glob Chang Biol; 2013 Aug; 19(8):2427-43. PubMed ID: 23589473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visible and microscopic needle alterations of mature Aleppo pine (Pinus halepensis) trees growing on an ozone gradient in eastern Spain.
    Kivimäenpää M; Sutinen S; Calatayud V; Sanz MJ
    Tree Physiol; 2010 Apr; 30(4):541-54. PubMed ID: 20215119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gas exchange and antioxidative compounds in young beech trees under free-air ozone exposure and comparisons to adult trees.
    Herbinger K; Then C; Haberer K; Alexou M; Löw M; Remele K; Rennenberg H; Matyssek R; Grill D; Wieser G; Tausz M
    Plant Biol (Stuttg); 2007 Mar; 9(2):288-97. PubMed ID: 17357021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photochemical smog effects in mixed conifer forests along a natural gradient of ozone and nitrogen deposition in the San Bernardino Mountains.
    Arbaugh M; Bytnerowicz A; Grulke N; Fenn M; Poth M; Temple P; Miller P
    Environ Int; 2003 Jun; 29(2-3):401-6. PubMed ID: 12676233
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth and photosynthetic responses of two pine species (Pinus koraiensis and Pinus rigida) in a polluted industrial region in Korea.
    Choi DS; Kayama M; Jin HO; Lee CH; Izuta T; Koike T
    Environ Pollut; 2006 Feb; 139(3):421-32. PubMed ID: 16112781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Can pine needles indicate trends in the air pollution levels at remote sites?
    Klánová J; Cupr P; Baráková D; Seda Z; Andel P; Holoubek I
    Environ Pollut; 2009 Dec; 157(12):3248-54. PubMed ID: 19539411
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blue wild-rye grass competition increases the effect of ozone on ponderosa pine seedlings.
    Andersen CP; Hogsett WE; Plocher M; Rodecap K; Lee EH
    Tree Physiol; 2001 Mar; 21(5):319-27. PubMed ID: 11262923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variation in morphological and biochemical O3 injury attributes of mature Jeffrey pine within canopies and between microsites.
    Grulke NE; Johnson R; Monschein S; Nikolova P; Tausz M
    Tree Physiol; 2003 Sep; 23(13):923-9. PubMed ID: 14532016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ozone-induced changes in the chloroplast structure of conifer needles, and their use in ozone diagnostics.
    Kivimäenpää M; Selldén G; Sutinen S
    Environ Pollut; 2005 Oct; 137(3):466-75. PubMed ID: 16005759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distribution of persistent organohalogen compounds in pine needles from selected locations in Kentucky and Georgia, USA.
    Loganathan BG; Kumar KS; Seaford KD; Sajwan KS; Hanari N; Yamashita N
    Arch Environ Contam Toxicol; 2008 Apr; 54(3):422-39. PubMed ID: 17928938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A review of ozone-induced effects on the forests of central Mexico.
    de Bauer Mde L; Hernández-Tejeda T
    Environ Pollut; 2007 Jun; 147(3):446-53. PubMed ID: 17478022
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antioxidative defence of old growth beech (Fagus sylvatica) under double ambient O3 concentrations in a free-air exposure system.
    Haberer K; Herbinger K; Alexou M; Tausz M; Rennenberg H
    Plant Biol (Stuttg); 2007 Mar; 9(2):215-26. PubMed ID: 17357016
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detecting changes in insect herbivore communities along a pollution gradient.
    Eatough Jones M; Paine TD
    Environ Pollut; 2006 Oct; 143(3):377-87. PubMed ID: 16459003
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence that branch cuvettes are reasonable surrogates for estimating O3 effects in entire tree crowns.
    Then C; Herbinger K; Blumenröther M; Haberer K; Heerdt C; Osswald W; Rennenberg H; Grill D; Tausz M; Wieser G
    Plant Biol (Stuttg); 2007 Mar; 9(2):309-19. PubMed ID: 17357023
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biochemical parameters as biomarkers for the early recognition of environmental pollution on Scots pine trees. II. The antioxidative metabolites ascorbic acid, glutathione, alpha-tocopherol and the enzymes superoxide dismutase and glutathione reductase.
    Schulz H; Härtling S
    Z Naturforsch C J Biosci; 2001; 56(9-10):767-80. PubMed ID: 11724381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.