BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 19329743)

  • 1. Individually variable energy management during egg production is repeatable across breeding attempts.
    Williams TD; Vézina F; Speakman JR
    J Exp Biol; 2009 Apr; 212(Pt 8):1101-5. PubMed ID: 19329743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of intake rate on energy expenditure, somatic repair and reproduction of zebra finches.
    Wiersma P; Verhulst S
    J Exp Biol; 2005 Nov; 208(Pt 21):4091-8. PubMed ID: 16244168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The metabolic cost of egg production is repeatable.
    Vézina F; Williams TD
    J Exp Biol; 2005 Jul; 208(Pt 13):2533-8. PubMed ID: 15961739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. What comes first, the zebra finch or the egg: temperature-dependent reproductive, physiological and behavioural plasticity in egg-laying zebra finches.
    Salvante KG; Walzem RL; Williams TD
    J Exp Biol; 2007 Apr; 210(Pt 8):1325-34. PubMed ID: 17401116
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hematological changes associated with egg production: estrogen dependence and repeatability.
    Wagner EC; Prevolsek JS; Wynne-Edwards KE; Williams TD
    J Exp Biol; 2008 Feb; 211(Pt 3):400-8. PubMed ID: 18203996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for within-individual energy reallocation in cold-challenged, egg-producing birds.
    Salvante KG; Vézina F; Williams TD
    J Exp Biol; 2010 Jun; 213(Pt 12):1991-2000. PubMed ID: 20511512
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Food intake, locomotor activity, and egg laying in zebra finches: contributions to reproductive energy demand?
    Williams TD; Ternan SP
    Physiol Biochem Zool; 1999; 72(1):19-27. PubMed ID: 9882599
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Individually variable energy management strategies in relation to energetic costs of egg production.
    Vézina F; Speakman JR; Williams TD
    Ecology; 2006 Oct; 87(10):2447-58. PubMed ID: 17089654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hematological changes associated with egg production: direct evidence for changes in erythropoiesis but a lack of resource dependence?
    Wagner EC; Stables CA; Williams TD
    J Exp Biol; 2008 Sep; 211(Pt 18):2960-8. PubMed ID: 18775933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cost of living in free-ranging degus (Octodon degus): seasonal dynamics of energy expenditure.
    Bozinovic F; Bacigalupe LD; Vásquez RA; Visser GH; Veloso C; Kenagy GJ
    Comp Biochem Physiol A Mol Integr Physiol; 2004 Mar; 137(3):597-604. PubMed ID: 15123196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tough decisions: Reproductive timing and output vary with individuals' physiology, behavior and past success in a social opportunistic breeder.
    Mariette MM; Buchanan KL; Buttemer WA; Careau V
    Horm Behav; 2015 Nov; 76():23-33. PubMed ID: 25917863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The cost of reproduction induced by body size at birth and breeding density.
    Oksanen TA; Koivula M; Koskela E; Mappes T
    Evolution; 2007 Dec; 61(12):2822-31. PubMed ID: 17924957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for an intrinsic energetic ceiling in free-ranging kittiwakes Rissa tridactyla.
    Welcker J; Moe B; Bech C; Fyhn M; Schultner J; Speakman JR; Gabrielsen GW
    J Anim Ecol; 2010 Jan; 79(1):205-13. PubMed ID: 19817918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of very-low density lipoprotein particle diameter dynamics in relation to egg production in a passerine bird.
    Salvante KG; Lin G; Walzem RL; Williams TD
    J Exp Biol; 2007 Mar; 210(Pt 6):1064-74. PubMed ID: 17337718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intersexual differences in energy expenditure of Anolis carolinensis lizards during breeding and postbreeding seasons.
    Orrell KS; Congdon JD; Jenssen TA; Michener RH; Kunz TH
    Physiol Biochem Zool; 2004; 77(1):50-64. PubMed ID: 15057717
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cue hierarchies and testicular development: is food a more potent stimulus than day length in an opportunistic breeder (Taeniopygia g. guttata)?
    Perfito N; Kwong JM; Bentley GE; Hau M
    Horm Behav; 2008 Apr; 53(4):567-72. PubMed ID: 18295766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adrenocortical responses in zebra finches (Taeniopygia guttata): individual variation, repeatability, and relationship to phenotypic quality.
    Wada H; Salvante KG; Stables C; Wagner E; Williams TD; Breuner CW
    Horm Behav; 2008 Mar; 53(3):472-80. PubMed ID: 18221739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An experimental manipulation of life-history trajectories and resistance to oxidative stress.
    Alonso-Alvarez C; Bertrand S; Devevey G; Prost J; Faivre B; Chastel O; Sorci G
    Evolution; 2006 Sep; 60(9):1913-24. PubMed ID: 17089975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molt-breeding overlap alters molt dynamics and behavior in zebra finches, Taeniopygia guttata castanotis.
    Echeverry-Galvis MA; Hau M
    J Exp Biol; 2012 Jun; 215(Pt 11):1957-64. PubMed ID: 22573775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Is there an energetic-based trade-off between thermoregulation and the acute phase response in zebra finches?
    Burness G; Armstrong C; Fee T; Tilman-Schindel E
    J Exp Biol; 2010 Apr; 213(Pt 8):1386-94. PubMed ID: 20348351
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.