These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 19329745)

  • 1. Non-linear myofilament elasticity in frog intact muscle fibres.
    Edman KA
    J Exp Biol; 2009 Apr; 212(Pt 8):1115-9. PubMed ID: 19329745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contractile properties of mouse single muscle fibers, a comparison with amphibian muscle fibers.
    Edman KA
    J Exp Biol; 2005 May; 208(Pt 10):1905-13. PubMed ID: 15879071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The force bearing capacity of frog muscle fibres during stretch: its relation to sarcomere length and fibre width.
    Edman KA
    J Physiol; 1999 Sep; 519 Pt 2(Pt 2):515-26. PubMed ID: 10457067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synchronous oscillations of length and stiffness during loaded shortening of frog muscle fibres.
    Edman KA; Curtin NA
    J Physiol; 2001 Jul; 534(Pt. 2):553-63. PubMed ID: 11454972
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy transfer during stress relaxation of contracting frog muscle fibres.
    Mantovani M; Heglund NC; Cavagna GA
    J Physiol; 2001 Dec; 537(Pt 3):923-39. PubMed ID: 11744765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tension responses to sudden length change in stimulated frog muscle fibres near slack length.
    Ford LE; Huxley AF; Simmons RM
    J Physiol; 1977 Jul; 269(2):441-515. PubMed ID: 302333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Depression of tetanic force induced by loaded shortening of frog muscle fibres.
    Edman KA; Caputo C; Lou F
    J Physiol; 1993 Jul; 466():535-52. PubMed ID: 8410705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The dependence of the short-range elasticity on sarcomere length in resting isolated frog muscle fibres.
    Haugen P; Sten-Knudsen O
    Acta Physiol Scand; 1981 Jun; 112(2):113-20. PubMed ID: 6976066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The relation between stiffness and filament overlap in stimulated frog muscle fibres.
    Ford LE; Huxley AF; Simmons RM
    J Physiol; 1981 Feb; 311():219-49. PubMed ID: 6973625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Myofilament sliding per ATP molecule in rabbit muscle fibres studied using laser flash photolysis of caged ATP.
    Yamada T; Abe O; Kobayashi T; Sugi H
    J Physiol; 1993 Jul; 466():229-43. PubMed ID: 8410692
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Moderate fatigue studied at great sarcomere lengths in frog single muscle fibres.
    Lou F; Sun YB
    Acta Physiol Scand; 1994 Oct; 152(2):163-72. PubMed ID: 7839860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of passive force in single skeletal muscle fibres.
    Rassier DE; Lee EJ; Herzog W
    Biol Lett; 2005 Sep; 1(3):342-5. PubMed ID: 17148202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of tonicity on tension and stiffness of tetanized skeletal muscle fibres of the frog.
    MÃ¥nsson A
    Acta Physiol Scand; 1989 Jun; 136(2):205-16. PubMed ID: 2789465
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The force-velocity relationship at negative loads (assisted shortening) studied in isolated, intact muscle fibres of the frog.
    Edman KA
    Acta Physiol (Oxf); 2014 Aug; 211(4):609-16. PubMed ID: 24888542
    [TBL] [Abstract][Full Text] [Related]  

  • 15. There is no experimental evidence for non-linear myofilament elasticity in skeletal muscle.
    Reconditi M
    J Exp Biol; 2010 Feb; 213(4):658-9; author reply 659. PubMed ID: 20118317
    [No Abstract]   [Full Text] [Related]  

  • 16. Evidence that the tandem Ig domains near the end of the muscle thick filament form an inelastic part of the I-band titin.
    Bennett PM; Hodkin TE; Hawkins C
    J Struct Biol; 1997 Oct; 120(1):93-104. PubMed ID: 9356297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature dependence of the force-generating process in single fibres from frog skeletal muscle.
    Piazzesi G; Reconditi M; Koubassova N; Decostre V; Linari M; Lucii L; Lombardi V
    J Physiol; 2003 May; 549(Pt 1):93-106. PubMed ID: 12665607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Short-range elasticity after tetanic stimulation in single muscle fibres of the frog.
    Haugen P
    Acta Physiol Scand; 1982 Apr; 114(4):487-95. PubMed ID: 6982599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strain of passive elements during force enhancement by stretch in frog muscle fibres.
    Edman KA; Tsuchiya T
    J Physiol; 1996 Jan; 490 ( Pt 1)(Pt 1):191-205. PubMed ID: 8745287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tension and stiffness of frog muscle fibres at full filament overlap.
    Bagni MA; Cecchi G; Colomo F; Poggesi C
    J Muscle Res Cell Motil; 1990 Oct; 11(5):371-7. PubMed ID: 2266164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.