BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 19330004)

  • 1. Oxidation of a potassium channel causes progressive sensory function loss during aging.
    Cai SQ; Sesti F
    Nat Neurosci; 2009 May; 12(5):611-7. PubMed ID: 19330004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new mode of regulation of N-type inactivation in a Caenorhabditis elegans voltage-gated potassium channel.
    Cai SQ; Sesti F
    J Biol Chem; 2007 Jun; 282(25):18597-18601. PubMed ID: 17488718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A potassium channel-MiRP complex controls neurosensory function in Caenorhabditis elegans.
    Bianchi L; Kwok SM; Driscoll M; Sesti F
    J Biol Chem; 2003 Apr; 278(14):12415-24. PubMed ID: 12533541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular mechanisms underlying KVS-1-MPS-1 complex assembly.
    Wang Y; Sesti F
    Biophys J; 2007 Nov; 93(9):3083-91. PubMed ID: 17604313
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toxic role of K+ channel oxidation in mammalian brain.
    Cotella D; Hernandez-Enriquez B; Wu X; Li R; Pan Z; Leveille J; Link CD; Oddo S; Sesti F
    J Neurosci; 2012 Mar; 32(12):4133-44. PubMed ID: 22442077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual Role of an mps-2/KCNE-Dependent Pathway in Long-Term Memory and Age-Dependent Memory Decline.
    Fenyves BG; Arnold A; Gharat VG; Haab C; Tishinov K; Peter F; de Quervain D; Papassotiropoulos A; Stetak A
    Curr Biol; 2021 Feb; 31(3):527-539.e7. PubMed ID: 33259792
    [TBL] [Abstract][Full Text] [Related]  

  • 7. KChIP-like auxiliary subunits of Kv4 channels regulate excitability of muscle cells and control male turning behavior during mating in Caenorhabditis elegans.
    Chen X; Ruan MY; Cai SQ
    J Neurosci; 2015 Feb; 35(5):1880-91. PubMed ID: 25653349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A family of K+ channel ancillary subunits regulate taste sensitivity in Caenorhabditis elegans.
    Park KH; Hernandez L; Cai SQ; Wang Y; Sesti F
    J Biol Chem; 2005 Jun; 280(23):21893-9. PubMed ID: 15799965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel bipartite UNC-101/AP-1 μ1 binding signal mediates KVS-4/Kv2.1 somatodendritic distribution in Caenorhabditis elegans.
    Zhou X; Zeng J; Ouyang C; Luo Q; Yu M; Yang Z; Wang H; Shen K; Shi A
    FEBS Lett; 2016 Jan; 590(1):76-92. PubMed ID: 26762178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Knockout of glial channel ACD-1 exacerbates sensory deficits in a C. elegans mutant by regulating calcium levels of sensory neurons.
    Wang Y; D'Urso G; Bianchi L
    J Neurophysiol; 2012 Jan; 107(1):148-58. PubMed ID: 21994266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Delayed pharyngeal repolarization promotes abnormal calcium buildup in aging muscle.
    Swiatkowski P; Sesti F
    Biochem Biophys Res Commun; 2013 Apr; 433(3):354-7. PubMed ID: 23510998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Longevity-promoting effects of 4-hydroxy-E-globularinin in Caenorhabditis elegans.
    Shukla V; Yadav D; Phulara SC; Gupta MM; Saikia SK; Pandey R
    Free Radic Biol Med; 2012 Nov; 53(10):1848-56. PubMed ID: 23000058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Age-induced diminution of free radicals by Boeravinone B in Caenorhabditis elegans.
    Rathor L; Pandey R
    Exp Gerontol; 2018 Oct; 111():94-106. PubMed ID: 30004006
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Guanine nucleotide exchange factor OSG-1 confers functional aging via dysregulated Rho signaling in Caenorhabditis elegans neurons.
    Duan Z; Sesti F
    Genetics; 2015 Feb; 199(2):487-96. PubMed ID: 25527286
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensory activity affects sensory axon development in C. elegans.
    Peckol EL; Zallen JA; Yarrow JC; Bargmann CI
    Development; 1999 May; 126(9):1891-902. PubMed ID: 10101123
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EGL-4/PKG regulates the role of an interneuron in a chemotaxis circuit of C. elegans through mediating integration of sensory signals.
    Hino T; Hirai S; Ishihara T; Fujiwara M
    Genes Cells; 2021 Jun; 26(6):411-425. PubMed ID: 33817914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial stress extends lifespan in C. elegans through neuronal hormesis.
    Maglioni S; Schiavi A; Runci A; Shaik A; Ventura N
    Exp Gerontol; 2014 Aug; 56():89-98. PubMed ID: 24709340
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arsenite exposure accelerates aging process regulated by the transcription factor DAF-16/FOXO in Caenorhabditis elegans.
    Yu CW; How CM; Liao VH
    Chemosphere; 2016 May; 150():632-638. PubMed ID: 26796881
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Left-right olfactory asymmetry results from antagonistic functions of voltage-activated calcium channels and the Raw repeat protein OLRN-1 in C. elegans.
    Bauer Huang SL; Saheki Y; VanHoven MK; Torayama I; Ishihara T; Katsura I; van der Linden A; Sengupta P; Bargmann CI
    Neural Dev; 2007 Nov; 2():24. PubMed ID: 17986337
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insights on the age dependent neurodegeneration induced by Monocrotophos, (an organophosphorous insecticide) in Caenorhabditis elegans fed high glucose: Evidence in wild and transgenic strains.
    Salim C; Thadathil N; Muralidhara M; Rajini PS
    Comp Biochem Physiol C Toxicol Pharmacol; 2018 Sep; 211():15-24. PubMed ID: 29763691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.