These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 1933031)
1. Computer simulations of cell-target encounter including biased cell motion toward targets: single and multiple cell-target simulations in two dimensions. Charnick SB; Fisher ES; Lauffenburger DA Bull Math Biol; 1991; 53(4):591-621. PubMed ID: 1933031 [TBL] [Abstract][Full Text] [Related]
2. Mathematical analysis of cell-target encounter rates in three dimensions. Effect of chemotaxis. Charnick SB; Lauffenburger DA Biophys J; 1990 May; 57(5):1009-23. PubMed ID: 2340340 [TBL] [Abstract][Full Text] [Related]
3. Mathematical analysis of cell-target encounter rates in two dimensions. The effect of chemotaxis. Fisher ES; Lauffenburger DA Biophys J; 1987 May; 51(5):705-16. PubMed ID: 3593868 [TBL] [Abstract][Full Text] [Related]
4. Analysis of the effects of immune cell motility and chemotaxis on target elimination dynamics. Fisher ES; Lauffenburger DA Math Biosci; 1990 Feb; 98(1):73-102. PubMed ID: 2134499 [TBL] [Abstract][Full Text] [Related]
5. Physical constraints on accuracy and persistence during breast cancer cell chemotaxis. Varennes J; Moon HR; Saha S; Mugler A; Han B PLoS Comput Biol; 2019 Apr; 15(4):e1006961. PubMed ID: 30970018 [TBL] [Abstract][Full Text] [Related]
7. Dynamics of a microorganism moving by chemotaxis in its own secretion. Sengupta A; van Teeffelen S; Löwen H Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 1):031122. PubMed ID: 19905077 [TBL] [Abstract][Full Text] [Related]
8. Signaling noise enhances chemotactic drift of E. coli. Flores M; Shimizu TS; ten Wolde PR; Tostevin F Phys Rev Lett; 2012 Oct; 109(14):148101. PubMed ID: 23083290 [TBL] [Abstract][Full Text] [Related]
9. A Diffusion Approximation Based on Renewal Processes with Applications to Strongly Biased Run-Tumble Motion. Thygesen UH Bull Math Biol; 2016 Mar; 78(3):556-79. PubMed ID: 27012850 [TBL] [Abstract][Full Text] [Related]
10. Modelling of microscale patch encounter by chemotactic protozoa. Blackburn N; Fenchel T Protist; 1999 Oct; 150(3):337-43. PubMed ID: 10575705 [TBL] [Abstract][Full Text] [Related]
11. Analytical modeling and experimental characterization of chemotaxis in Serratia marcescens. Zhuang J; Wei G; Wright Carlsen R; Edwards MR; Marculescu R; Bogdan P; Sitti M Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052704. PubMed ID: 25353826 [TBL] [Abstract][Full Text] [Related]
12. Active Brownian agents with concentration-dependent chemotactic sensitivity. Meyer M; Schimansky-Geier L; Romanczuk P Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022711. PubMed ID: 25353513 [TBL] [Abstract][Full Text] [Related]
13. Multiscale dynamics of biological cells with chemotactic interactions: from a discrete stochastic model to a continuous description. Alber M; Chen N; Glimm T; Lushnikov PM Phys Rev E Stat Nonlin Soft Matter Phys; 2006 May; 73(5 Pt 1):051901. PubMed ID: 16802961 [TBL] [Abstract][Full Text] [Related]
14. The chemotactic behavior of computer-based surrogate bacteria. Bray D; Levin MD; Lipkow K Curr Biol; 2007 Jan; 17(1):12-9. PubMed ID: 17208180 [TBL] [Abstract][Full Text] [Related]
15. Persistence of direction increases the drift velocity of run and tumble chemotaxis. Locsei JT J Math Biol; 2007 Jul; 55(1):41-60. PubMed ID: 17354016 [TBL] [Abstract][Full Text] [Related]
16. Simulations of chemotaxis and random motility in 2D random porous domains. Jabbarzadeh E; Abrams CF Bull Math Biol; 2007 Feb; 69(2):747-64. PubMed ID: 17216402 [TBL] [Abstract][Full Text] [Related]
17. Modelling the motion of clusters of cells in a viscous fluid using the boundary integral method. Harris PJ Math Biosci; 2018 Dec; 306():145-151. PubMed ID: 30267736 [TBL] [Abstract][Full Text] [Related]