BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 19330544)

  • 1. Physiological characterization and electron microscopic investigation of cyanobacteria associated with wheat rhizosphere.
    Karthikeyan N; Prasanna R; Sood A; Jaiswal P; Nayak S; Kaushik BD
    Folia Microbiol (Praha); 2009; 54(1):43-51. PubMed ID: 19330544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation and characterization of indole acetic acid (IAA) producing Klebsiella pneumoniae strains from rhizosphere of wheat (Triticum aestivum) and their effect on plant growth.
    Sachdev DP; Chaudhari HG; Kasture VM; Dhavale DD; Chopade BA
    Indian J Exp Biol; 2009 Dec; 47(12):993-1000. PubMed ID: 20329704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Auxin producing non-heterocystous Cyanobacteria and their impact on the growth and endogenous auxin homeostasis of wheat.
    Mazhar S; Cohen JD; Hasnain S
    J Basic Microbiol; 2013 Dec; 53(12):996-1003. PubMed ID: 23765374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phytostimulation and biofertilization in wheat by cyanobacteria.
    Hussain A; Hasnain S
    J Ind Microbiol Biotechnol; 2011 Jan; 38(1):85-92. PubMed ID: 20820860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biofilm formation and indole-3-acetic acid production by two rhizospheric unicellular cyanobacteria.
    Ahmed M; Stal LJ; Hasnain S
    J Microbiol Biotechnol; 2014 Aug; 24(8):1015-25. PubMed ID: 24705871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative effects of wild type Stenotrophomonas maltophilia and its indole acetic acid-deficient mutants on wheat.
    Hassan TU; Bano A
    Plant Biol (Stuttg); 2016 Sep; 18(5):835-41. PubMed ID: 27263526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of IAA production in cyanobacteria by tryptophan and light.
    Prasanna R; Joshi M; Rana A; Nain L
    Pol J Microbiol; 2010; 59(2):99-105. PubMed ID: 20734754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat.
    Khalid A; Arshad M; Zahir ZA
    J Appl Microbiol; 2004; 96(3):473-80. PubMed ID: 14962127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Plant Growth Promoting Bacteria Associated with Halophytic Weed (Psoralea corylifolia L) on Germination and Seedling Growth of Wheat Under Saline Conditions.
    Sorty AM; Meena KK; Choudhary K; Bitla UM; Minhas PS; Krishnani KK
    Appl Biochem Biotechnol; 2016 Nov; 180(5):872-882. PubMed ID: 27215915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation and characterization of N
    Xu J; Kloepper JW; Huang P; McInroy JA; Hu CH
    J Basic Microbiol; 2018 May; 58(5):459-471. PubMed ID: 29473969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cultivation-Based and Molecular Assessment of Bacterial Diversity in the Rhizosheath of Wheat under Different Crop Rotations.
    Tahir M; Mirza MS; Hameed S; Dimitrov MR; Smidt H
    PLoS One; 2015; 10(6):e0130030. PubMed ID: 26121588
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Medicago truncatula Gaertn. as a model for understanding the mechanism of growth promotion by bacteria from rhizosphere and nodules of alfalfa.
    Kisiel A; Kępczyńska E
    Planta; 2016 May; 243(5):1169-89. PubMed ID: 26861677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of two carrier materials for phosphate solubilizing biofertilizers and their effect on growth of wheat (Triticum aestivum L.).
    Mukhtar S; Shahid I; Mehnaz S; Malik KA
    Microbiol Res; 2017 Dec; 205():107-117. PubMed ID: 28942836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic and phenotypic diversity of plant-growth-promoting bacilli isolated from wheat fields in southern Brazil.
    Beneduzi A; Peres D; da Costa PB; Bodanese Zanettini MH; Passaglia LM
    Res Microbiol; 2008 May; 159(4):244-50. PubMed ID: 18490146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation, identification, and the growth promoting effects of two antagonistic actinomycete strains from the rhizosphere of Mikania micrantha Kunth.
    Han D; Wang L; Luo Y
    Microbiol Res; 2018 Mar; 208():1-11. PubMed ID: 29551207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth stimulatory effect of AHL producing Serratia spp. from potato on homologous and non-homologous host plants.
    Hanif MK; Malik KA; Hameed S; Saddique MJ; Ayesha ; Fatima K; Naqqash T; Majeed A; Iqbal MJ; Imran A
    Microbiol Res; 2020 Sep; 238():126506. PubMed ID: 32540731
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation, characterization, and plasmid pUPI126-mediated indole-3-acetic acid production in acinetobacter strains from rhizosphere of wheat.
    Huddedar SB; Shete AM; Tilekar JN; Gore SD; Dhavale DD; Chopade BA
    Appl Biochem Biotechnol; 2002; 102-103(1-6):21-39. PubMed ID: 12396108
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Screening and characterization of endophytic Bacillus and Paenibacillus strains from medicinal plant Lonicera japonica for use as potential plant growth promoters.
    Zhao L; Xu Y; Lai XH; Shan C; Deng Z; Ji Y
    Braz J Microbiol; 2015; 46(4):977-89. PubMed ID: 26691455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exopolysaccharide producing rhizobacteria and their impact on growth and drought tolerance of wheat grown under rainfed conditions.
    Khan N; Bano A
    PLoS One; 2019; 14(9):e0222302. PubMed ID: 31513660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface colonization by Azospirillum brasilense SM in the indole-3-acetic acid dependent growth improvement of sorghum.
    Kochar M; Srivastava S
    J Basic Microbiol; 2012 Apr; 52(2):123-31. PubMed ID: 21656820
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.