BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 19330765)

  • 1. Hydrophilic ester-bearing chlorogenic acid binds to a novel domain to inhibit xanthine oxidase.
    Wang SH; Chen CS; Huang SH; Yu SH; Lai ZY; Huang ST; Lin CM
    Planta Med; 2009 Sep; 75(11):1237-40. PubMed ID: 19330765
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure-activity relationship of C6-C3 phenylpropanoids on xanthine oxidase-inhibiting and free radical-scavenging activities.
    Chang YC; Lee FW; Chen CS; Huang ST; Tsai SH; Huang SH; Lin CM
    Free Radic Biol Med; 2007 Dec; 43(11):1541-51. PubMed ID: 17964425
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of a potent xanthine oxidase inhibitor from oxidation of caffeic acid.
    Masuda T; Shingai Y; Takahashi C; Inai M; Miura Y; Honda S; Masuda A
    Free Radic Biol Med; 2014 Apr; 69():300-7. PubMed ID: 24503177
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of inhibition of rice bran lipase by polyphenols: a case study with chlorogenic acid and caffeic acid.
    Raghavendra MP; Kumar PR; Prakash V
    J Food Sci; 2007 Oct; 72(8):E412-9. PubMed ID: 17995599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel Xanthine Oxidase (XO) inhibitory phenylindanes produced by thermal reaction of caffeic acid.
    Fukuyama Y; Hidaka K; Masuda A; Masuda T
    Biosci Biotechnol Biochem; 2018 Oct; 82(10):1825-1828. PubMed ID: 29961419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure-activity relationship of caffeic acid analogues on xanthine oxidase inhibition.
    Chan WS; Wen PC; Chiang HC
    Anticancer Res; 1995; 15(3):703-7. PubMed ID: 7645946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial metabolism of caffeic acid and its esters chlorogenic and caftaric acids by human faecal microbiota in vitro.
    Gonthier MP; Remesy C; Scalbert A; Cheynier V; Souquet JM; Poutanen K; Aura AM
    Biomed Pharmacother; 2006 Nov; 60(9):536-40. PubMed ID: 16978827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insights into the inhibition of xanthine oxidase by curcumin.
    Shen L; Ji HF
    Bioorg Med Chem Lett; 2009 Nov; 19(21):5990-3. PubMed ID: 19800788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of Temperature on the Composition and Xanthine Oxidase Inhibitory Activities of Caffeic Acid Roasting Products.
    Masuda T; Fukuyama Y; Doi S; Masuda A; Kurosawa S; Fujii S
    J Agric Food Chem; 2019 Aug; 67(32):8977-8985. PubMed ID: 31334649
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A rational approach for the design and synthesis of 1-acetyl-3,5-diaryl-4,5-dihydro(1H)pyrazoles as a new class of potential non-purine xanthine oxidase inhibitors.
    Nepali K; Singh G; Turan A; Agarwal A; Sapra S; Kumar R; Banerjee UC; Verma PK; Satti NK; Gupta MK; Suri OP; Dhar KL
    Bioorg Med Chem; 2011 Mar; 19(6):1950-8. PubMed ID: 21353569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deciphering the inhibitory mechanism of genistein on xanthine oxidase in vitro.
    Lin S; Zhang G; Pan J; Gong D
    J Photochem Photobiol B; 2015 Dec; 153():463-72. PubMed ID: 26584360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transepithelial transport of chlorogenic acid, caffeic acid, and their colonic metabolites in intestinal caco-2 cell monolayers.
    Konishi Y; Kobayashi S
    J Agric Food Chem; 2004 May; 52(9):2518-26. PubMed ID: 15113150
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular modifications on carboxylic acid derivatives as potent histone deacetylase inhibitors: Activity and docking studies.
    Bora-Tatar G; Dayangaç-Erden D; Demir AS; Dalkara S; Yelekçi K; Erdem-Yurter H
    Bioorg Med Chem; 2009 Jul; 17(14):5219-28. PubMed ID: 19520580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Xanthine oxidase inhibitory activity of alkyl gallates.
    Masuoka N; Nihei K; Kubo I
    Mol Nutr Food Res; 2006 Aug; 50(8):725-31. PubMed ID: 16865746
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uptake and metabolism of hydroxycinnamic acids (chlorogenic, caffeic, and ferulic acids) by HepG2 cells as a model of the human liver.
    Mateos R; Goya L; Bravo L
    J Agric Food Chem; 2006 Nov; 54(23):8724-32. PubMed ID: 17090113
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro and in vivo stability of caffeic acid phenethyl ester, a bioactive compound of propolis.
    Celli N; Dragani LK; Murzilli S; Pagliani T; Poggi A
    J Agric Food Chem; 2007 May; 55(9):3398-407. PubMed ID: 17394337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel insights into the inhibitory mechanism of kaempferol on xanthine oxidase.
    Wang Y; Zhang G; Pan J; Gong D
    J Agric Food Chem; 2015 Jan; 63(2):526-34. PubMed ID: 25539132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular dynamics approach to probe the allosteric inhibition of PTP1B by chlorogenic and cichoric acid.
    Baskaran SK; Goswami N; Selvaraj S; Muthusamy VS; Lakshmi BS
    J Chem Inf Model; 2012 Aug; 52(8):2004-12. PubMed ID: 22747429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dietary Flavonoids as Xanthine Oxidase Inhibitors: Structure-Affinity and Structure-Activity Relationships.
    Lin S; Zhang G; Liao Y; Pan J; Gong D
    J Agric Food Chem; 2015 Sep; 63(35):7784-94. PubMed ID: 26285120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of DNA methylation by caffeic acid and chlorogenic acid, two common catechol-containing coffee polyphenols.
    Lee WJ; Zhu BT
    Carcinogenesis; 2006 Feb; 27(2):269-77. PubMed ID: 16081510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.