BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

868 related articles for article (PubMed ID: 19331389)

  • 1. Theoretical aspects of the biological catch bond.
    Prezhdo OV; Pereverzev YV
    Acc Chem Res; 2009 Jun; 42(6):693-703. PubMed ID: 19331389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atomistic simulation combined with analytic theory to study the response of the P-selectin/PSGL-1 complex to an external force.
    Gunnerson KN; Pereverzev YV; Prezhdo OV
    J Phys Chem B; 2009 Feb; 113(7):2090-100. PubMed ID: 19178163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anomalously increased lifetimes of biological complexes at zero force due to the protein-water interface.
    Pereverzev YV; Prezhdo OV; Sokurenko EV
    J Phys Chem B; 2008 Sep; 112(36):11440-5. PubMed ID: 18710275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catch bonds: physical models and biological functions.
    Zhu C; McEver RP
    Mol Cell Biomech; 2005 Sep; 2(3):91-104. PubMed ID: 16708472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catch bonds: physical models, structural bases, biological function and rheological relevance.
    Zhu C; Lou J; McEver RP
    Biorheology; 2005; 42(6):443-62. PubMed ID: 16369083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinctive features of the biological catch bond in the jump-ramp force regime predicted by the two-pathway model.
    Pereverzev YV; Prezhdo OV; Thomas WE; Sokurenko EV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 1):010903. PubMed ID: 16089930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct observation of catch bonds involving cell-adhesion molecules.
    Marshall BT; Long M; Piper JW; Yago T; McEver RP; Zhu C
    Nature; 2003 May; 423(6936):190-3. PubMed ID: 12736689
    [TBL] [Abstract][Full Text] [Related]  

  • 8. For catch bonds, it all hinges on the interdomain region.
    Thomas W
    J Cell Biol; 2006 Sep; 174(7):911-3. PubMed ID: 17000873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Beyond induced-fit receptor-ligand interactions: structural changes that can significantly extend bond lifetimes.
    Nilsson LM; Thomas WE; Sokurenko EV; Vogel V
    Structure; 2008 Jul; 16(7):1047-58. PubMed ID: 18611378
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic competition between catch and slip bonds in selectins bound to ligands.
    Barsegov V; Thirumalai D
    J Phys Chem B; 2006 Dec; 110(51):26403-12. PubMed ID: 17181300
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Force modulating dynamic disorder: a physical model of catch-slip bond transitions in receptor-ligand forced dissociation experiments.
    Liu F; Ou-Yang ZC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Nov; 74(5 Pt 1):051904. PubMed ID: 17279936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical switching and coupling between two dissociation pathways in a P-selectin adhesion bond.
    Evans E; Leung A; Heinrich V; Zhu C
    Proc Natl Acad Sci U S A; 2004 Aug; 101(31):11281-6. PubMed ID: 15277675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy landscapes of receptor-ligand bonds explored with dynamic force spectroscopy.
    Merkel R; Nassoy P; Leung A; Ritchie K; Evans E
    Nature; 1999 Jan; 397(6714):50-3. PubMed ID: 9892352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoinduced dynamics in semiconductor quantum dots: insights from time-domain ab initio studies.
    Prezhdo OV
    Acc Chem Res; 2009 Dec; 42(12):2005-16. PubMed ID: 19888715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. N-H...O, O-H...O, and C-H...O hydrogen bonds in protein-ligand complexes: strong and weak interactions in molecular recognition.
    Sarkhel S; Desiraju GR
    Proteins; 2004 Feb; 54(2):247-59. PubMed ID: 14696187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computer simulations and theory of protein translocation.
    Makarov DE
    Acc Chem Res; 2009 Feb; 42(2):281-9. PubMed ID: 19072704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogen bonds in membrane proteins.
    Sheu SY; Schlag EW; Selzle HL; Yang DY
    J Phys Chem B; 2009 Apr; 113(15):5318-26. PubMed ID: 19354309
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The two-pathway model for the catch-slip transition in biological adhesion.
    Pereverzev YV; Prezhdo OV; Forero M; Sokurenko EV; Thomas WE
    Biophys J; 2005 Sep; 89(3):1446-54. PubMed ID: 15951391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atomic force microscopy: determination of unbinding force, off rate and energy barrier for protein-ligand interaction.
    Lee CK; Wang YM; Huang LS; Lin S
    Micron; 2007; 38(5):446-61. PubMed ID: 17015017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The two-pathway model of the biological catch-bond as a limit of the allosteric model.
    Pereverzev YV; Prezhdo E; Sokurenko EV
    Biophys J; 2011 Oct; 101(8):2026-36. PubMed ID: 22004757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 44.