These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 19331390)

  • 1. Molecular basis for inhibition of GH84 glycoside hydrolases by substituted azepanes: conformational flexibility enables probing of substrate distortion.
    Marcelo F; He Y; Yuzwa SA; Nieto L; Jiménez-Barbero J; Sollogoub M; Vocadlo DJ; Davies GD; Blériot Y
    J Am Chem Soc; 2009 Apr; 131(15):5390-2. PubMed ID: 19331390
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of 2-carboxymethyl polyhydroxyazepanes and their evaluation as glycosidase inhibitors.
    Taghzouti H; Goumain S; Harakat D; Portella C; Behr JB; Plantier-Royon R
    Bioorg Chem; 2015 Feb; 58():11-7. PubMed ID: 25462622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational analyses of the reaction coordinate of glycosidases.
    Davies GJ; Planas A; Rovira C
    Acc Chem Res; 2012 Feb; 45(2):308-16. PubMed ID: 21923088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards a stable noeuromycin analog with a D-manno configuration: synthesis and glycosidase inhibition of D-manno-like tri- and tetrahydroxylated azepanes.
    Deschamp J; Mondon M; Nakagawa S; Kato A; Alonzi DS; Butters TD; Zhang Y; Sollogoub M; Blériot Y
    Bioorg Med Chem; 2012 Jan; 20(2):641-9. PubMed ID: 20971647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of polyhydroxy 7- and N-alkyl-azepanes as potent glycosidase inhibitors.
    Shih TL; Liang MT; Wu KD; Lin CH
    Carbohydr Res; 2011 Feb; 346(2):183-90. PubMed ID: 21146809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissecting conformational contributions to glycosidase catalysis and inhibition.
    Speciale G; Thompson AJ; Davies GJ; Williams SJ
    Curr Opin Struct Biol; 2014 Oct; 28():1-13. PubMed ID: 25016573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The first synthesis of substituted azepanes mimicking monosaccharides: a new class of potent glycosidase inhibitors.
    Li H; Blériot Y; Chantereau C; Mallet JM; Sollogoub M; Zhang Y; Rodríguez-García E; Vogel P; Jiménez-Barbero J; Sinaÿ P
    Org Biomol Chem; 2004 May; 2(10):1492-9. PubMed ID: 15136805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. O-GlcNAcase uses substrate-assisted catalysis: kinetic analysis and development of highly selective mechanism-inspired inhibitors.
    Macauley MS; Whitworth GE; Debowski AW; Chin D; Vocadlo DJ
    J Biol Chem; 2005 Jul; 280(27):25313-22. PubMed ID: 15795231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insight into a strategy for attenuating AmpC-mediated beta-lactam resistance: structural basis for selective inhibition of the glycoside hydrolase NagZ.
    Balcewich MD; Stubbs KA; He Y; James TW; Davies GJ; Vocadlo DJ; Mark BL
    Protein Sci; 2009 Jul; 18(7):1541-51. PubMed ID: 19499593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and synthesis of acetamido tri- and tetra-hydroxyazepanes: potent and selective beta-N-acetylhexosaminidase inhibitors.
    Li H; Marcelo F; Bello C; Vogel P; Butters TD; Rauter AP; Zhang Y; Sollogoub M; Blériot Y
    Bioorg Med Chem; 2009 Aug; 17(15):5598-604. PubMed ID: 19592259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glycosidase mechanisms.
    Vasella A; Davies GJ; Böhm M
    Curr Opin Chem Biol; 2002 Oct; 6(5):619-29. PubMed ID: 12413546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective trihydroxylated azepane inhibitors of NagZ, a glycosidase involved in Pseudomonas aeruginosa resistance to β-lactam antibiotics.
    Bouquet J; King DT; Vadlamani G; Benzie GR; Iorga B; Ide D; Adachi I; Kato A; Vocadlo DJ; Mark BL; Blériot Y; Désiré J
    Org Biomol Chem; 2017 May; 15(21):4609-4619. PubMed ID: 28513749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potent Glycosidase Inhibition with Heterovalent Fullerenes: Unveiling the Binding Modes Triggering Multivalent Inhibition.
    Abellán Flos M; García Moreno MI; Ortiz Mellet C; García Fernández JM; Nierengarten JF; Vincent SP
    Chemistry; 2016 Aug; 22(32):11450-60. PubMed ID: 27374430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of PUGNAc and NAG-thiazoline as transition state analogues for human O-GlcNAcase: mechanistic and structural insights into inhibitor selectivity and transition state poise.
    Whitworth GE; Macauley MS; Stubbs KA; Dennis RJ; Taylor EJ; Davies GJ; Greig IR; Vocadlo DJ
    J Am Chem Soc; 2007 Jan; 129(3):635-44. PubMed ID: 17227027
    [TBL] [Abstract][Full Text] [Related]  

  • 15. C2-symmetrical tetrahydroxyazepanes as inhibitors of glycosidases and HIV/FIV proteases.
    Qian X; Morís-Varas F; Fitzgerald MC; Wong CH
    Bioorg Med Chem; 1996 Dec; 4(12):2055-69. PubMed ID: 9022971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Substrate distortion by a lichenase highlights the different conformational itineraries harnessed by related glycoside hydrolases.
    Money VA; Smith NL; Scaffidi A; Stick RV; Gilbert HJ; Davies GJ
    Angew Chem Int Ed Engl; 2006 Aug; 45(31):5136-40. PubMed ID: 16823793
    [No Abstract]   [Full Text] [Related]  

  • 17. Synthesis of azasugars as potent inhibitors of glycosidases.
    Le Merrer Y; Poitout L; Depezay JC; Dosbaa I; Geoffroy S; Foglietti MJ
    Bioorg Med Chem; 1997 Mar; 5(3):519-33. PubMed ID: 9113331
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of GlcNAc-processing glycosidases by C-6-azido-NAG-thiazoline and its derivatives.
    Krejzová J; Simon P; Kalachova L; Kulik N; Bojarová P; Marhol P; Pelantová H; Cvačka J; Ettrich R; Slámová K; Křen V
    Molecules; 2014 Mar; 19(3):3471-88. PubMed ID: 24658571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational flexibility of the glycosidase NagZ allows it to bind structurally diverse inhibitors to suppress β-lactam antibiotic resistance.
    Vadlamani G; Stubbs KA; Désiré J; Blériot Y; Vocadlo DJ; Mark BL
    Protein Sci; 2017 Jun; 26(6):1161-1170. PubMed ID: 28370529
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distortion of a cellobio-derived isofagomine highlights the potential conformational itinerary of inverting beta-glucosidases.
    Varrot A; Macdonald J; Stick RV; Pell G; Gilbert HJ; Davies GJ
    Chem Commun (Camb); 2003 Apr; (8):946-7. PubMed ID: 12744312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.