These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 19331446)

  • 1. Effects on executive function following damage to the prefrontal cortex in the rhesus monkey (Macaca mulatta).
    Moore TL; Schettler SP; Killiany RJ; Rosene DL; Moss MB
    Behav Neurosci; 2009 Apr; 123(2):231-41. PubMed ID: 19331446
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A non-human primate test of abstraction and set shifting: an automated adaptation of the Wisconsin Card Sorting Test.
    Moore TL; Killiany RJ; Herndon JG; Rosene DL; Moss MB
    J Neurosci Methods; 2005 Aug; 146(2):165-73. PubMed ID: 16054506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Primate analogue of the Wisconsin Card Sorting Test: effects of excitotoxic lesions of the prefrontal cortex in the marmoset.
    Dias R; Robbins TW; Roberts AC
    Behav Neurosci; 1996 Oct; 110(5):872-86. PubMed ID: 8918991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impaired executive function following ischemic stroke in the rat medial prefrontal cortex.
    Cordova CA; Jackson D; Langdon KD; Hewlett KA; Corbett D
    Behav Brain Res; 2014 Jan; 258():106-11. PubMed ID: 24144544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prefrontal cell activities related to monkeys' success and failure in adapting to rule changes in a Wisconsin Card Sorting Test analog.
    Mansouri FA; Matsumoto K; Tanaka K
    J Neurosci; 2006 Mar; 26(10):2745-56. PubMed ID: 16525054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impairment in delayed nonmatching to sample following lesions of dorsal prefrontal cortex.
    Moore TL; Schettler SP; Killiany RJ; Rosene DL; Moss MB
    Behav Neurosci; 2012 Dec; 126(6):772-80. PubMed ID: 23088539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Working memory representation of empty sets in the primate parietal and prefrontal cortices.
    Ramirez-Cardenas A; Nieder A
    Cortex; 2019 May; 114():102-114. PubMed ID: 30975433
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impairment in abstraction and set shifting in aged rhesus monkeys.
    Moore TL; Killiany RJ; Herndon JG; Rosene DL; Moss MB
    Neurobiol Aging; 2003; 24(1):125-34. PubMed ID: 12493558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissociable roles of prefrontal subregions in self-ordered working memory performance.
    Chase HW; Clark L; Sahakian BJ; Bullmore ET; Robbins TW
    Neuropsychologia; 2008 Sep; 46(11):2650-61. PubMed ID: 18556028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mnemonic Introspection in Macaques Is Dependent on Superior Dorsolateral Prefrontal Cortex But Not Orbitofrontal Cortex.
    Kwok SC; Cai Y; Buckley MJ
    J Neurosci; 2019 Jul; 39(30):5922-5934. PubMed ID: 31123101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impairment of executive function induced by hypertension in the rhesus monkey (Macaca mulatta).
    Moore TL; Killiany RJ; Rosene DL; Prusty S; Hollander W; Moss MB
    Behav Neurosci; 2002 Jun; 116(3):387-96. PubMed ID: 12049319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prefrontal cortex and rule abstraction: where and whether? Theoretical comment on Moore et al. (2009).
    Baxter MG
    Behav Neurosci; 2009 Apr; 123(2):459-62. PubMed ID: 19331470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reward-related reversal learning after surgical excisions in orbito-frontal or dorsolateral prefrontal cortex in humans.
    Hornak J; O'Doherty J; Bramham J; Rolls ET; Morris RG; Bullock PR; Polkey CE
    J Cogn Neurosci; 2004 Apr; 16(3):463-78. PubMed ID: 15072681
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of primate prefrontal and inferior temporal cortices during visual categorization.
    Freedman DJ; Riesenhuber M; Poggio T; Miller EK
    J Neurosci; 2003 Jun; 23(12):5235-46. PubMed ID: 12832548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of primate prefrontal and premotor cortex neuronal activity during visual categorization.
    Cromer JA; Roy JE; Buschman TJ; Miller EK
    J Cogn Neurosci; 2011 Nov; 23(11):3355-65. PubMed ID: 21452948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prefrontal-temporal disconnection impairs recognition memory but not familiarity discrimination.
    Browning PG; Baxter MG; Gaffan D
    J Neurosci; 2013 Jun; 33(23):9667-74. PubMed ID: 23739963
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dissociable components of rule-guided behavior depend on distinct medial and prefrontal regions.
    Buckley MJ; Mansouri FA; Hoda H; Mahboubi M; Browning PG; Kwok SC; Phillips A; Tanaka K
    Science; 2009 Jul; 325(5936):52-8. PubMed ID: 19574382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PFC neurons reflect categorical decisions about ambiguous stimuli.
    Roy JE; Buschman TJ; Miller EK
    J Cogn Neurosci; 2014 Jun; 26(6):1283-91. PubMed ID: 24405188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decision-making processes following damage to the prefrontal cortex.
    Manes F; Sahakian B; Clark L; Rogers R; Antoun N; Aitken M; Robbins T
    Brain; 2002 Mar; 125(Pt 3):624-39. PubMed ID: 11872618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disentangling the prefrontal network for rule selection by means of a non-verbal variant of the Wisconsin Card Sorting Test.
    Specht K; Lie CH; Shah NJ; Fink GR
    Hum Brain Mapp; 2009 May; 30(5):1734-43. PubMed ID: 18729079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.