These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 19331854)

  • 1. Pulsed in vitro release and in vivo behavior of exploding microcapsules.
    De Geest BG; De Koker S; Demeester J; De Smedt SC; Hennink WE
    J Control Release; 2009 May; 135(3):268-73. PubMed ID: 19331854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Layer-by-layer coating of degradable microgels for pulsed drug delivery.
    De Geest BG; Déjugnat C; Verhoeven E; Sukhorukov GB; Jonas AM; Plain J; Demeester J; De Smedt SC
    J Control Release; 2006 Nov; 116(2):159-69. PubMed ID: 16904787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-exploding lipid-coated microgels.
    De Geest BG; Stubbe BG; Jonas AM; Van Thienen T; Hinrichs WL; Demeester J; De Smedt SC
    Biomacromolecules; 2006 Jan; 7(1):373-9. PubMed ID: 16398538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel pulsed drug-delivery system: polyelectrolyte layer-by-layer coating of chitosan-alginate microgels.
    Zhou G; Lu Y; Zhang H; Chen Y; Yu Y; Gao J; Sun D; Zhang G; Zou H; Zhong Y
    Int J Nanomedicine; 2013; 8():877-87. PubMed ID: 23486565
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature sensitive contact lenses for triggered ophthalmic drug delivery.
    Jung HJ; Chauhan A
    Biomaterials; 2012 Mar; 33(7):2289-300. PubMed ID: 22182750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glucose-responsive microhydrogels based on methacrylate modified dextran/concanavalin A for insulin delivery.
    Yin R; Tong Z; Yang D; Nie J
    J Control Release; 2011 Nov; 152 Suppl 1():e163-5. PubMed ID: 22195824
    [No Abstract]   [Full Text] [Related]  

  • 7. A new biodegradable crosslinked polyethylene oxide sulfide (PEOS) hydrogel for controlled drug release.
    Koo H; Jin GW; Kang H; Lee Y; Nam HY; Jang HS; Park JS
    Int J Pharm; 2009 Jun; 374(1-2):58-65. PubMed ID: 19446760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controllable exploding microcapsules as drug carriers.
    Zhang J; Li C; Wang Y; Zhuo RX; Zhang XZ
    Chem Commun (Camb); 2011 Apr; 47(15):4457-9. PubMed ID: 21387057
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermosensitive, biocompatible and antifouling nanogels prepared via aqueous raft dispersion polymerization for targeted drug delivery.
    Shen W; Chang Y; Wang H; Liu G; Cao A; An Z
    J Control Release; 2011 Nov; 152 Suppl 1():e75-6. PubMed ID: 22195939
    [No Abstract]   [Full Text] [Related]  

  • 10. Synthesis and characterization of degradable p(HEMA) microgels: use of acid-labile crosslinkers.
    Bulmus V; Chan Y; Nguyen Q; Tran HL
    Macromol Biosci; 2007 Apr; 7(4):446-55. PubMed ID: 17429806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chitosan-gelatin-based microgel for sustained drug delivery.
    Wang K; Lin S; Nune KC; Misra RD
    J Biomater Sci Polym Ed; 2016; 27(5):441-53. PubMed ID: 26775820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation and characterization of biodegradable poly(l-lactide)/poly(ethylene glycol) microcapsules containing erythromycin by emulsion solvent evaporation technique.
    Park SJ; Kim SH
    J Colloid Interface Sci; 2004 Mar; 271(2):336-41. PubMed ID: 14972610
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel cationic pH-responsive poly(N,N-dimethylaminoethyl methacrylate) microcapsules prepared by a microfluidic technique.
    Wei J; Ju XJ; Xie R; Mou CL; Lin X; Chu LY
    J Colloid Interface Sci; 2011 May; 357(1):101-8. PubMed ID: 21345438
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The pros and cons of polyelectrolyte capsules in drug delivery.
    De Geest BG; Sukhorukov GB; Möhwald H
    Expert Opin Drug Deliv; 2009 Jun; 6(6):613-24. PubMed ID: 19519288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the synthesis and characterization of biodegradable dextran nanogels with tunable degradation properties.
    Van Thienen TG; Lucas B; Demeester J; De Smedt SC
    J Control Release; 2006 Nov; 116(2):e12-3. PubMed ID: 17718944
    [No Abstract]   [Full Text] [Related]  

  • 16. Novel glycidyl methacrylated dextran/gelatin nanoparticles loaded with basic fibroblast growth factor: formulation and characteristics.
    Gu C; Zheng R; Yang Z; Wen A; Wu H; Zhang H; Yi D
    Drug Dev Ind Pharm; 2009 Dec; 35(12):1419-29. PubMed ID: 19929201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One-pot aqueous synthesis of sub-10 nm responsive nanogels.
    Li L; Chang A; Hu Y; Zhang L; Wu W
    Chem Commun (Camb); 2013 Jul; 49(58):6534-6. PubMed ID: 23756418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plum-pudding gels as a platform for drug delivery: understanding the effects of the different components on the diffusion behavior of solutes.
    Salvati A; Söderman O; Lynch I
    J Phys Chem B; 2007 Jun; 111(25):7367-76. PubMed ID: 17547442
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodegradable microcapsules prepared by a w/o/w technique: effects of shear force to make a primary w/o emulsion on their morphology and protein release.
    Sah HK; Toddywala R; Chien YW
    J Microencapsul; 1995; 12(1):59-69. PubMed ID: 7730957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drug release from interpenetrating polymer networks based on poly(ethylene glycol) methyl ether acrylate and gelatin.
    Ding F; Hsu SH; Wu DH; Chiang WY
    J Biomater Sci Polym Ed; 2009; 20(5-6):605-18. PubMed ID: 19323879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.