BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 19332463)

  • 1. Reduced myocardial creatine kinase flux in human myocardial infarction: an in vivo phosphorus magnetic resonance spectroscopy study.
    Bottomley PA; Wu KC; Gerstenblith G; Schulman SP; Steinberg A; Weiss RG
    Circulation; 2009 Apr; 119(14):1918-24. PubMed ID: 19332463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chronic phosphocreatine depletion by the creatine analogue beta-guanidinopropionate is associated with increased mortality and loss of ATP in rats after myocardial infarction.
    Horn M; Remkes H; Strömer H; Dienesch C; Neubauer S
    Circulation; 2001 Oct; 104(15):1844-9. PubMed ID: 11591624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Altered creatine kinase adenosine triphosphate kinetics in failing hypertrophied human myocardium.
    Smith CS; Bottomley PA; Schulman SP; Gerstenblith G; Weiss RG
    Circulation; 2006 Sep; 114(11):1151-8. PubMed ID: 16952984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural-network classification of cardiac disease from
    Solaiyappan M; Weiss RG; Bottomley PA
    J Cardiovasc Magn Reson; 2019 Aug; 21(1):49. PubMed ID: 31401975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Myocardial energy metabolism in ischemic preconditioning and cardioplegia: a metabolic control analysis.
    Vogt AM; Elsässer A; Pott-Beckert A; Ackermann C; Vetter SY; Yildiz M; Schoels W; Fell DA; Katus HA; Kübler W
    Mol Cell Biochem; 2005 Oct; 278(1-2):223-32. PubMed ID: 16180108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Myocardial Energetics in Obesity: Enhanced ATP Delivery Through Creatine Kinase With Blunted Stress Response.
    Rayner JJ; Peterzan MA; Watson WD; Clarke WT; Neubauer S; Rodgers CT; Rider OJ
    Circulation; 2020 Apr; 141(14):1152-1163. PubMed ID: 32138541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Noninvasive localized MR quantification of creatine kinase metabolites in normal and infarcted canine myocardium.
    Bottomley PA; Weiss RG
    Radiology; 2001 May; 219(2):411-8. PubMed ID: 11323465
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics of creatine kinase in an experimental model of low phosphocreatine and ATP in the normoxic heart.
    Stepanov V; Mateo P; Gillet B; Beloeil JC; Lechene P; Hoerter JA
    Am J Physiol; 1997 Oct; 273(4):C1397-408. PubMed ID: 9357786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ATP flux through creatine kinase in the normal, stressed, and failing human heart.
    Weiss RG; Gerstenblith G; Bottomley PA
    Proc Natl Acad Sci U S A; 2005 Jan; 102(3):808-13. PubMed ID: 15647364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impaired ATP kinetics in failing in vivo mouse heart.
    Gupta A; Chacko VP; Schär M; Akki A; Weiss RG
    Circ Cardiovasc Imaging; 2011 Jan; 4(1):42-50. PubMed ID: 20926788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the theoretical limits of detecting cyclic changes in cardiac high-energy phosphates and creatine kinase reaction kinetics using in vivo ³¹P MRS.
    Weiss K; Bottomley PA; Weiss RG
    NMR Biomed; 2015 Jun; 28(6):694-705. PubMed ID: 25914379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 31P NMR studies of creatine kinase flux in M-creatine kinase-deficient mouse heart.
    Van Dorsten FA; Nederhoff MG; Nicolay K; Van Echteld CJ
    Am J Physiol; 1998 Oct; 275(4):H1191-9. PubMed ID: 9746466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Myocardial creatine kinase kinetics in hearts with postinfarction left ventricular remodeling.
    Murakami Y; Zhang J; Eijgelshoven MH; Chen W; Carlyle WC; Zhang Y; Gong G; Bache RJ
    Am J Physiol; 1999 Mar; 276(3):H892-900. PubMed ID: 10070072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cardiac work is related to creatine kinase energy supply in human heart failure: a cardiovascular magnetic resonance spectroscopy study.
    Gabr RE; El-Sharkawy AM; Schär M; Panjrath GS; Gerstenblith G; Weiss RG; Bottomley PA
    J Cardiovasc Magn Reson; 2018 Dec; 20(1):81. PubMed ID: 30526611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 31P NMR 2D Mapping of Creatine Kinase Forward Flux Rate in Hearts with Postinfarction Left Ventricular Remodeling in Response to Cell Therapy.
    Gao L; Cui W; Zhang P; Jang A; Zhu W; Zhang J
    PLoS One; 2016; 11(9):e0162149. PubMed ID: 27606901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preservation of cardiac function and energy reserve by the angiotensin-converting enzyme inhibitor quinapril during postmyocardial infarction remodeling in the rat.
    Hügel S; Horn M; Remkes H; Dienesch C; Neubauer S
    J Cardiovasc Magn Reson; 2001; 3(3):215-25. PubMed ID: 11816618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impairment of energy metabolism in intact residual myocardium of rat hearts with chronic myocardial infarction.
    Neubauer S; Horn M; Naumann A; Tian R; Hu K; Laser M; Friedrich J; Gaudron P; Schnackerz K; Ingwall JS
    J Clin Invest; 1995 Mar; 95(3):1092-100. PubMed ID: 7883957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enalapril treatment increases cardiac performance and energy reserve via the creatine kinase reaction in myocardium of Syrian myopathic hamsters with advanced heart failure.
    Nascimben L; Friedrich J; Liao R; Pauletto P; Pessina AC; Ingwall JS
    Circulation; 1995 Mar; 91(6):1824-33. PubMed ID: 7882493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Creatine kinase-catalyzed reaction rate in the cyanide-poisoned mouse brain.
    Holtzman D; Offutt M; Tsuji M; Neuringer LJ; Jacobs D
    J Cereb Blood Flow Metab; 1993 Jan; 13(1):153-61. PubMed ID: 8417004
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-energy phosphate metabolism and creatine kinase in failing hearts: a new porcine model.
    Ye Y; Gong G; Ochiai K; Liu J; Zhang J
    Circulation; 2001 Mar; 103(11):1570-6. PubMed ID: 11257087
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.