These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
328 related articles for article (PubMed ID: 19332553)
1. Antioxidant activity of the yeast mitochondrial one-Cys peroxiredoxin is dependent on thioredoxin reductase and glutathione in vivo. Greetham D; Grant CM Mol Cell Biol; 2009 Jun; 29(11):3229-40. PubMed ID: 19332553 [TBL] [Abstract][Full Text] [Related]
2. Overlapping roles of the cytoplasmic and mitochondrial redox regulatory systems in the yeast Saccharomyces cerevisiae. Trotter EW; Grant CM Eukaryot Cell; 2005 Feb; 4(2):392-400. PubMed ID: 15701801 [TBL] [Abstract][Full Text] [Related]
3. Oxidation of the yeast mitochondrial thioredoxin promotes cell death. Greetham D; Kritsiligkou P; Watkins RH; Carter Z; Parkin J; Grant CM Antioxid Redox Signal; 2013 Feb; 18(4):376-85. PubMed ID: 22770501 [TBL] [Abstract][Full Text] [Related]
4. Glutathione Is the Resolving Thiol for Thioredoxin Peroxidase Activity of 1-Cys Peroxiredoxin Without Being Consumed During the Catalytic Cycle. Pedrajas JR; McDonagh B; Hernández-Torres F; Miranda-Vizuete A; González-Ojeda R; Martínez-Galisteo E; Padilla CA; Bárcena JA Antioxid Redox Signal; 2016 Jan; 24(3):115-28. PubMed ID: 26159064 [TBL] [Abstract][Full Text] [Related]
5. Mitochondria of Saccharomyces cerevisiae contain one-conserved cysteine type peroxiredoxin with thioredoxin peroxidase activity. Pedrajas JR; Miranda-Vizuete A; Javanmardy N; Gustafsson JA; Spyrou G J Biol Chem; 2000 May; 275(21):16296-301. PubMed ID: 10821871 [TBL] [Abstract][Full Text] [Related]
6. Thioredoxin 1 is inactivated due to oxidation induced by peroxiredoxin under oxidative stress and reactivated by the glutaredoxin system. Du Y; Zhang H; Zhang X; Lu J; Holmgren A J Biol Chem; 2013 Nov; 288(45):32241-32247. PubMed ID: 24062305 [TBL] [Abstract][Full Text] [Related]
7. Glutaredoxin participates in the reduction of peroxides by the mitochondrial 1-CYS peroxiredoxin in Saccharomyces cerevisiae. Pedrajas JR; Padilla CA; McDonagh B; Bárcena JA Antioxid Redox Signal; 2010 Aug; 13(3):249-58. PubMed ID: 20059400 [TBL] [Abstract][Full Text] [Related]
8. Glutathionylation of the Active Site Cysteines of Peroxiredoxin 2 and Recycling by Glutaredoxin. Peskin AV; Pace PE; Behring JB; Paton LN; Soethoudt M; Bachschmid MM; Winterbourn CC J Biol Chem; 2016 Feb; 291(6):3053-62. PubMed ID: 26601956 [TBL] [Abstract][Full Text] [Related]
9. Alcohol induces mitochondrial redox imbalance in alveolar macrophages. Liang Y; Harris FL; Jones DP; Brown LAS Free Radic Biol Med; 2013 Dec; 65():1427-1434. PubMed ID: 24140864 [TBL] [Abstract][Full Text] [Related]
10. Fmp40 ampylase regulates cell survival upon oxidative stress by controlling Prx1 and Trx3 oxidation. Masanta S; Wiesyk A; Panja C; Pilch S; Ciesla J; Sipko M; De A; Enkhbaatar T; Maslanka R; Skoneczna A; Kucharczyk R Redox Biol; 2024 Jul; 73():103201. PubMed ID: 38795545 [TBL] [Abstract][Full Text] [Related]
11. The architecture of redox microdomains: Cascading gradients and peroxiredoxins' redox-oligomeric coupling integrate redox signaling and antioxidant protection. Griffith M; Araújo A; Travasso R; Salvador A Redox Biol; 2024 Feb; 69():103000. PubMed ID: 38150990 [TBL] [Abstract][Full Text] [Related]
12. Identification and functional characterization of a novel mitochondrial thioredoxin system in Saccharomyces cerevisiae. Pedrajas JR; Kosmidou E; Miranda-Vizuete A; Gustafsson JA; Wright AP; Spyrou G J Biol Chem; 1999 Mar; 274(10):6366-73. PubMed ID: 10037727 [TBL] [Abstract][Full Text] [Related]
13. The atypical thioredoxin 'Alr2205', a newly identified partner of the typical 2-Cys-Peroxiredoxin, safeguards the cyanobacterium Anabaena from oxidative stress. Banerjee M; Waghamare N; Kalwani P; Hurali DT; Agarwal R; Ballal A Biochem J; 2023 Jan; 480(1):87-104. PubMed ID: 36594794 [TBL] [Abstract][Full Text] [Related]
14. Subdivision of the bacterioferritin comigratory protein family of bacterial peroxiredoxins based on catalytic activity. Clarke DJ; Ortega XP; Mackay CL; Valvano MA; Govan JR; Campopiano DJ; Langridge-Smith P; Brown AR Biochemistry; 2010 Feb; 49(6):1319-30. PubMed ID: 20078128 [TBL] [Abstract][Full Text] [Related]
15. Structural snapshots of yeast alkyl hydroperoxide reductase Ahp1 peroxiredoxin reveal a novel two-cysteine mechanism of electron transfer to eliminate reactive oxygen species. Lian FM; Yu J; Ma XX; Yu XJ; Chen Y; Zhou CZ J Biol Chem; 2012 May; 287(21):17077-17087. PubMed ID: 22474296 [TBL] [Abstract][Full Text] [Related]
16. Inactivation of human peroxiredoxin I during catalysis as the result of the oxidation of the catalytic site cysteine to cysteine-sulfinic acid. Yang KS; Kang SW; Woo HA; Hwang SC; Chae HZ; Kim K; Rhee SG J Biol Chem; 2002 Oct; 277(41):38029-36. PubMed ID: 12161445 [TBL] [Abstract][Full Text] [Related]
18. Chloroplast NADPH-dependent thioredoxin reductase from Chlorella vulgaris alleviates environmental stresses in yeast together with 2-Cys peroxiredoxin. Machida T; Ishibashi A; Kirino A; Sato J; Kawasaki S; Niimura Y; Honjoh K; Miyamoto T PLoS One; 2012; 7(9):e45988. PubMed ID: 23029353 [TBL] [Abstract][Full Text] [Related]
19. Lack of an efficient endoplasmic reticulum-localized recycling system protects peroxiredoxin IV from hyperoxidation. Cao Z; Subramaniam S; Bulleid NJ J Biol Chem; 2014 Feb; 289(9):5490-8. PubMed ID: 24403061 [TBL] [Abstract][Full Text] [Related]
20. Disulfide biochemistry in 2-cys peroxiredoxin: requirement of Glu50 and Arg146 for the reduction of yeast Tsa1 by thioredoxin. Tairum CA; de Oliveira MA; Horta BB; Zara FJ; Netto LE J Mol Biol; 2012 Nov; 424(1-2):28-41. PubMed ID: 22985967 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]