These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 19332795)
1. The grinding tip of the sea urchin tooth exhibits exquisite control over calcite crystal orientation and Mg distribution. Ma Y; Aichmayer B; Paris O; Fratzl P; Meibom A; Metzler RA; Politi Y; Addadi L; Gilbert PU; Weiner S Proc Natl Acad Sci U S A; 2009 Apr; 106(15):6048-53. PubMed ID: 19332795 [TBL] [Abstract][Full Text] [Related]
2. Mechanism of calcite co-orientation in the sea urchin tooth. Killian CE; Metzler RA; Gong YU; Olson IC; Aizenberg J; Politi Y; Wilt FH; Scholl A; Young A; Doran A; Kunz M; Tamura N; Coppersmith SN; Gilbert PU J Am Chem Soc; 2009 Dec; 131(51):18404-9. PubMed ID: 19954232 [TBL] [Abstract][Full Text] [Related]
3. Sea urchin tooth mineralization: calcite present early in the aboral plumula. Stock SR; Veis A; Xiao X; Almer JD; Dorvee JR J Struct Biol; 2012 Nov; 180(2):280-9. PubMed ID: 22940703 [TBL] [Abstract][Full Text] [Related]
5. Tropomyosin induces the synthesis of magnesian calcite in sea urchin spines. Kato Y; Ha W; Zheng Z; Negishi L; Kawano J; Kurita Y; Kurumizaka H; Suzuki M J Struct Biol; 2024 Jun; 216(2):108074. PubMed ID: 38432597 [TBL] [Abstract][Full Text] [Related]
6. Calcite orientations and composition ranges within teeth across Echinoidea. Stock SR; Ignatiev K; Lee PL; Almer JD Connect Tissue Res; 2014 Aug; 55 Suppl 1(0 1):48-52. PubMed ID: 25158180 [TBL] [Abstract][Full Text] [Related]
7. Design strategies of sea urchin teeth: structure, composition and micromechanical relations to function. Wang RZ; Addadi L; Weiner S Philos Trans R Soc Lond B Biol Sci; 1997 Apr; 352(1352):469-80. PubMed ID: 9163824 [TBL] [Abstract][Full Text] [Related]
8. Organic matrix-related mineralization of sea urchin spicules, spines, test and teeth. Veis A Front Biosci (Landmark Ed); 2011 Jun; 16(7):2540-60. PubMed ID: 21622194 [TBL] [Abstract][Full Text] [Related]
9. On the formation and functions of high and very high magnesium calcites in the continuously growing teeth of the echinoderm Lytechinus variegatus: development of crystallinity and protein involvement. Veis A; Stock SR; Alvares K; Lux E Cells Tissues Organs; 2011; 194(2-4):131-7. PubMed ID: 21555859 [TBL] [Abstract][Full Text] [Related]
10. SM50 repeat-polypeptides self-assemble into discrete matrix subunits and promote appositional calcium carbonate crystal growth during sea urchin tooth biomineralization. Mao Y; Satchell PG; Luan X; Diekwisch TG Ann Anat; 2016 Jan; 203():38-46. PubMed ID: 26194158 [TBL] [Abstract][Full Text] [Related]
11. Three-dimensional microarchitecture of the plates (primary, secondary, and carinar process) in the developing tooth of Lytechinus variegatus revealed by synchrotron X-ray absorption microtomography (microCT). Stock SR; Ignatiev KI; Dahl T; Veis A; De Carlo F J Struct Biol; 2003 Dec; 144(3):282-300. PubMed ID: 14643197 [TBL] [Abstract][Full Text] [Related]
12. Mapping of magnesium and of different protein fragments in sea urchin teeth via secondary ion mass spectroscopy. Robach JS; Stock SR; Veis A J Struct Biol; 2006 Jul; 155(1):87-95. PubMed ID: 16675267 [TBL] [Abstract][Full Text] [Related]
13. Biomineralization of the spicules of sea urchin embryos. Wilt FH Zoolog Sci; 2002 Mar; 19(3):253-61. PubMed ID: 12125922 [TBL] [Abstract][Full Text] [Related]
14. Sea urchin spine calcite forms via a transient amorphous calcium carbonate phase. Politi Y; Arad T; Klein E; Weiner S; Addadi L Science; 2004 Nov; 306(5699):1161-4. PubMed ID: 15539597 [TBL] [Abstract][Full Text] [Related]
15. Mesocrystalline structure and mechanical properties of biogenic calcite from sea urchin spine. Cölfen H; Bürgi HB; Chernyshov D; Stekiel M; Chumakova A; Bosak A; Wehinger B; Winkler B Acta Crystallogr B Struct Sci Cryst Eng Mater; 2022 Jun; 78(Pt 3 Pt 1):356-358. PubMed ID: 35695108 [TBL] [Abstract][Full Text] [Related]
16. Structure-property relationships of a biological mesocrystal in the adult sea urchin spine. Seto J; Ma Y; Davis SA; Meldrum F; Gourrier A; Kim YY; Schilde U; Sztucki M; Burghammer M; Maltsev S; Jäger C; Cölfen H Proc Natl Acad Sci U S A; 2012 Mar; 109(10):3699-704. PubMed ID: 22343283 [TBL] [Abstract][Full Text] [Related]
17. Ultrastructure and growth of the sea urchin tooth. Kniprath E Calcif Tissue Res; 1974 Mar; 14(3):211-28. PubMed ID: 4843789 [No Abstract] [Full Text] [Related]
18. Structural biology. Choosing the crystallization path less traveled. Weiner S; Sagi I; Addadi L Science; 2005 Aug; 309(5737):1027-8. PubMed ID: 16099970 [No Abstract] [Full Text] [Related]
19. Quantitative 3D structural analysis of the cellular microstructure of sea urchin spines (I): Methodology. Yang T; Wu Z; Chen H; Zhu Y; Li L Acta Biomater; 2020 Apr; 107():204-217. PubMed ID: 32109599 [TBL] [Abstract][Full Text] [Related]
20. Biomineral nanoparticles are space-filling. Yang L; Killian CE; Kunz M; Tamura N; Gilbert PU Nanoscale; 2011 Feb; 3(2):603-9. PubMed ID: 21082124 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]