These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 19333297)

  • 21. Laser-induced heating in optical traps.
    Peterman EJ; Gittes F; Schmidt CF
    Biophys J; 2003 Feb; 84(2 Pt 1):1308-16. PubMed ID: 12547811
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Imaginary magnetic tweezers for massively parallel surface adhesion spectroscopy.
    Yang Y; Erb RM; Wiley BJ; Zauscher S; Yellen BB
    Nano Lett; 2011 Apr; 11(4):1681-4. PubMed ID: 21417363
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mass-manufacturable polymer microfluidic device for dual fiber optical trapping.
    De Coster D; Ottevaere H; Vervaeke M; Van Erps J; Callewaert M; Wuytens P; Simpson SH; Hanna S; De Malsche W; Thienpont H
    Opt Express; 2015 Nov; 23(24):30991-1009. PubMed ID: 26698730
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Static and dynamic behavior of two optically bound microparticles in a standing wave.
    Brzobohatý O; Karásek V; Šiler M; Trojek J; Zemánek P
    Opt Express; 2011 Sep; 19(20):19613-26. PubMed ID: 21996903
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gold nanoparticles: enhanced optical trapping and sensitivity coupled with significant heating.
    Seol Y; Carpenter AE; Perkins TT
    Opt Lett; 2006 Aug; 31(16):2429-31. PubMed ID: 16880845
    [TBL] [Abstract][Full Text] [Related]  

  • 26. DNA as a metrology standard for length and force measurements with optical tweezers.
    Rickgauer JP; Fuller DN; Smith DE
    Biophys J; 2006 Dec; 91(11):4253-7. PubMed ID: 16963512
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Controlled photonic manipulation of proteins and other nanomaterials.
    Chen YF; Serey X; Sarkar R; Chen P; Erickson D
    Nano Lett; 2012 Mar; 12(3):1633-7. PubMed ID: 22283484
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Acoustic radiation force of high-order Bessel beam standing wave tweezers on a rigid sphere.
    Mitri FG
    Ultrasonics; 2009 Dec; 49(8):794-8. PubMed ID: 19692103
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Finite-difference analysis of plasmon-induced forces of metal nano-clusters by the Lorentz force formulation.
    Fujii M
    Opt Express; 2010 Dec; 18(26):27731-47. PubMed ID: 21197048
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optical manipulation of micron/submicron sized particles and biomolecules through plasmonics.
    Miao X; Wilson BK; Pun SH; Lin LY
    Opt Express; 2008 Sep; 16(18):13517-25. PubMed ID: 18772960
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanism of the quasi-zero axial acoustic radiation force experienced by elastic and viscoelastic spheres in the field of a quasi-Gaussian beam and particle tweezing.
    Mitri FG; Fellah ZE
    Ultrasonics; 2014 Jan; 54(1):351-7. PubMed ID: 23683798
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dynamic ray tracing for modeling optical cell manipulation.
    Sraj I; Szatmary AC; Marr DW; Eggleton CD
    Opt Express; 2010 Aug; 18(16):16702-14. PubMed ID: 20721060
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stable optical trapping and sensitive characterization of nanostructures using standing-wave Raman tweezers.
    Wu MY; Ling DX; Ling L; Li W; Li YQ
    Sci Rep; 2017 Feb; 7():42930. PubMed ID: 28211526
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Polarization gradient: exploring an original route for optical trapping and manipulation.
    Cipparrone G; Ricardez-Vargas I; Pagliusi P; Provenzano C
    Opt Express; 2010 Mar; 18(6):6008-13. PubMed ID: 20389620
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optical tweezers for the micromanipulation of plant cytoplasm and organelles.
    Hawes C; Osterrieder A; Sparkes IA; Ketelaar T
    Curr Opin Plant Biol; 2010 Dec; 13(6):731-5. PubMed ID: 21093352
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Differential detection of dual traps improves the spatial resolution of optical tweezers.
    Moffitt JR; Chemla YR; Izhaky D; Bustamante C
    Proc Natl Acad Sci U S A; 2006 Jun; 103(24):9006-11. PubMed ID: 16751267
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Three-dimensional nanolithography using light scattering from colloidal particles.
    Zhang XA; Elek J; Chang CH
    ACS Nano; 2013 Jul; 7(7):6212-8. PubMed ID: 23738902
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides.
    Yang AH; Moore SD; Schmidt BS; Klug M; Lipson M; Erickson D
    Nature; 2009 Jan; 457(7225):71-5. PubMed ID: 19122638
    [TBL] [Abstract][Full Text] [Related]  

  • 39. End-faced waveguide mediated optical propulsion of microspheres and single cells in a microfluidic device.
    Lilge L; Shah D; Charron L
    Lab Chip; 2013 Jul; 13(13):2554-62. PubMed ID: 23411834
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Theory of the acoustic radiation force exerted on a sphere by standing and quasistanding zero-order Bessel beam tweezers of variable half-cone angles.
    Mitri FG; Fellah ZE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Nov; 55(11):2469-78. PubMed ID: 19049926
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.