BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 19333508)

  • 1. Voltammetry of Pyrococcus furiosus ferritin: dependence of iron release rate on mediator potential.
    Tatur J; Hagen WR; Heering HA
    Dalton Trans; 2009 Apr; (15):2837-42. PubMed ID: 19333508
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The dinuclear iron-oxo ferroxidase center of Pyrococcus furiosus ferritin is a stable prosthetic group with unexpectedly high reduction potentials.
    Tatur J; Hagen WR
    FEBS Lett; 2005 Aug; 579(21):4729-32. PubMed ID: 16107254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphate accelerates displacement of Fe(III) by Fe(II) in the ferroxidase center of Pyrococcus furiosus ferritin.
    Honarmand Ebrahimi K; Hagedoorn PL; Hagen WR
    FEBS Lett; 2013 Jan; 587(2):220-5. PubMed ID: 23247211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectroscopic evidence for the presence of a high-valent Fe(IV) species in the ferroxidase reaction of an archaeal ferritin.
    Honarmand Ebrahimi K; Bill E; Hagedoorn PL; Hagen WR
    FEBS Lett; 2017 Jun; 591(12):1712-1719. PubMed ID: 28542723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A unified model for ferritin iron loading by the catalytic center: implications for controlling "free iron" during oxidative stress.
    Watt RK
    Chembiochem; 2013 Mar; 14(4):415-9. PubMed ID: 23404831
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-assembly is prerequisite for catalysis of Fe(II) oxidation by catalytically active subunits of ferritin.
    Ebrahimi KH; Hagedoorn PL; Hagen WR
    J Biol Chem; 2015 Oct; 290(44):26801-10. PubMed ID: 26370076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ STM imaging and direct electrochemistry of Pyrococcus furiosus ferredoxin assembled on thiolate-modified Au111 surfaces.
    Zhang J; Christensen HE; Ooi BL; Ulstrup J
    Langmuir; 2004 Nov; 20(23):10200-7. PubMed ID: 15518514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalysis of iron core formation in Pyrococcus furiosus ferritin.
    Honarmand Ebrahimi K; Hagedoorn PL; Jongejan JA; Hagen WR
    J Biol Inorg Chem; 2009 Nov; 14(8):1265-74. PubMed ID: 19623480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mineralization in ferritin: an efficient means of iron storage.
    Chasteen ND; Harrison PM
    J Struct Biol; 1999 Jun; 126(3):182-94. PubMed ID: 10441528
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct electron transfer reactions between human ceruloplasmin and electrodes.
    Haberska K; Vaz-Domínguez C; De Lacey AL; Dagys M; Reimann CT; Shleev S
    Bioelectrochemistry; 2009 Sep; 76(1-2):34-41. PubMed ID: 19535300
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The catalytic center of ferritin regulates iron storage via Fe(II)-Fe(III) displacement.
    Honarmand Ebrahimi K; Bill E; Hagedoorn PL; Hagen WR
    Nat Chem Biol; 2012 Nov; 8(11):941-8. PubMed ID: 23001032
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rate of iron transfer through the horse spleen ferritin shell determined by the rate of formation of Prussian Blue and Fe-desferrioxamine within the ferritin cavity.
    Zhang B; Watt RK; Gálvez N; Domínguez-Vera JM; Watt GD
    Biophys Chem; 2006 Mar; 120(2):96-105. PubMed ID: 16314026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intact human ceruloplasmin is required for the incorporation of iron into human ferritin.
    Van Eden ME; Aust SD
    Arch Biochem Biophys; 2000 Sep; 381(1):119-26. PubMed ID: 11019827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a bionanotechnological phosphate removal system with thermostable ferritin.
    Jacobs JF; Hasan MN; Paik KH; Hagen WR; van Loosdrecht MC
    Biotechnol Bioeng; 2010 Apr; 105(5):918-23. PubMed ID: 19953676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of putative nucleation sites on the loading and stability of iron in ferritin.
    Juan SH; Aust SD
    Arch Biochem Biophys; 1998 Feb; 350(2):259-65. PubMed ID: 9473300
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural basis for iron mineralization by bacterioferritin.
    Crow A; Lawson TL; Lewin A; Moore GR; Le Brun NE
    J Am Chem Soc; 2009 May; 131(19):6808-13. PubMed ID: 19391621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure of the ferritin from the hyperthermophilic archaeal anaerobe Pyrococcus furiosus.
    Tatur J; Hagen WR; Matias PM
    J Biol Inorg Chem; 2007 Jun; 12(5):615-30. PubMed ID: 17541801
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silver ion incorporation and nanoparticle formation inside the cavity of Pyrococcus furiosus ferritin: structural and size-distribution analyses.
    Kasyutich O; Ilari A; Fiorillo A; Tatchev D; Hoell A; Ceci P
    J Am Chem Soc; 2010 Mar; 132(10):3621-7. PubMed ID: 20170158
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphate and arsenate removal efficiency by thermostable ferritin enzyme from Pyrococcus furiosus using radioisotopes.
    Sevcenco AM; Paravidino M; Vrouwenvelder JS; Wolterbeek HT; van Loosdrecht MC; Hagen WR
    Water Res; 2015 Jun; 76():181-6. PubMed ID: 25817554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition and stimulation of formation of the ferroxidase center and the iron core in Pyrococcus furiosus ferritin.
    Honarmand Ebrahimi K; Hagedoorn PL; Hagen WR
    J Biol Inorg Chem; 2010 Nov; 15(8):1243-53. PubMed ID: 20582559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.