These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Bridging the gap between the nanostructural organization and macroscopic interfacial rheology of amyloid fibrils at liquid interfaces. Jordens S; Rühs PA; Sieber C; Isa L; Fischer P; Mezzenga R Langmuir; 2014 Aug; 30(33):10090-7. PubMed ID: 25100189 [TBL] [Abstract][Full Text] [Related]
8. Combining Microfluidics and Microrheology to Determine Rheological Properties of Soft Matter during Repeated Phase Transitions. Wehrman MD; Milstrey MJ; Lindberg S; Schultz KM J Vis Exp; 2018 Apr; (134):. PubMed ID: 29733318 [TBL] [Abstract][Full Text] [Related]
9. Protein oxidation during temperature-induced amyloid aggregation of beta-lactoglobulin. Keppler JK; Heyn TR; Meissner PM; Schrader K; Schwarz K Food Chem; 2019 Aug; 289():223-231. PubMed ID: 30955606 [TBL] [Abstract][Full Text] [Related]
10. Factors affecting rheological characteristics of fibril gels: the case of beta-lactoglobulin and alpha-lactalbumin. Loveday SM; Rao MA; Creamer LK; Singh H J Food Sci; 2009 Apr; 74(3):R47-55. PubMed ID: 19397731 [TBL] [Abstract][Full Text] [Related]
11. Determination of the elastic modulus of β-lactoglobulin amyloid fibrils by measuring the Debye-Waller factor. Sasaki N; Saitoh Y; Sharma RK; Furusawa K Int J Biol Macromol; 2016 Nov; 92():240-245. PubMed ID: 27411296 [TBL] [Abstract][Full Text] [Related]
12. Amyloid-like fibrils formed from intrinsically disordered caseins: physicochemical and nanomechanical properties. Pan K; Zhong Q Soft Matter; 2015 Aug; 11(29):5898-904. PubMed ID: 26112282 [TBL] [Abstract][Full Text] [Related]
13. On the kinetics of acid sodium caseinate gelation using particle tracking to probe the microrheology. Moschakis T; Murray BS; Dickinson E J Colloid Interface Sci; 2010 May; 345(2):278-85. PubMed ID: 20223466 [TBL] [Abstract][Full Text] [Related]
14. Gelation, phase behavior, and dynamics of β-lactoglobulin amyloid fibrils at varying concentrations and ionic strengths. Bolisetty S; Harnau L; Jung JM; Mezzenga R Biomacromolecules; 2012 Oct; 13(10):3241-52. PubMed ID: 22924940 [TBL] [Abstract][Full Text] [Related]
15. Elasticity in Physically Cross-Linked Amyloid Fibril Networks. Cao Y; Bolisetty S; Adamcik J; Mezzenga R Phys Rev Lett; 2018 Apr; 120(15):158103. PubMed ID: 29756901 [TBL] [Abstract][Full Text] [Related]
16. Using particle tracking to probe the local dynamics of barley β-glucan solutions upon gelation. Moschakis T; Lazaridou A; Biliaderis CG J Colloid Interface Sci; 2012 Jun; 375(1):50-9. PubMed ID: 22436725 [TBL] [Abstract][Full Text] [Related]
17. Simultaneous control of pH and ionic strength during interfacial rheology of β-lactoglobulin fibrils adsorbed at liquid/liquid Interfaces. Rühs PA; Scheuble N; Windhab EJ; Mezzenga R; Fischer P Langmuir; 2012 Aug; 28(34):12536-43. PubMed ID: 22857147 [TBL] [Abstract][Full Text] [Related]
18. Effect of beta-lactoglobulin A and B whey protein variants on the rennet-induced gelation of skim milk gels in a model reconstituted skim milk system. Meza-Nieto MA; Vallejo-Cordoba B; González-Córdova AF; Félix L; Goycoolea FM J Dairy Sci; 2007 Feb; 90(2):582-93. PubMed ID: 17235134 [TBL] [Abstract][Full Text] [Related]
19. Kinetics of spherulite formation and growth: salt and protein concentration dependence on proteins beta-lactoglobulin and insulin. Domike KR; Donald AM Int J Biol Macromol; 2009 May; 44(4):301-10. PubMed ID: 19437593 [TBL] [Abstract][Full Text] [Related]
20. Fibril assemblies in aqueous whey protein mixtures. Bolder SG; Hendrickx H; Sagis LM; van der Linden E J Agric Food Chem; 2006 Jun; 54(12):4229-34. PubMed ID: 16756351 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]