These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
251 related articles for article (PubMed ID: 19333635)
1. Comparison of bioleaching behaviors of different compositional sphalerite using Leptospirillum ferriphilum, Acidithiobacillus ferrooxidans and Acidithiobacillus caldus. Xia L; Dai S; Yin C; Hu Y; Liu J; Qiu G J Ind Microbiol Biotechnol; 2009 Jun; 36(6):845-51. PubMed ID: 19333635 [TBL] [Abstract][Full Text] [Related]
2. Effects of pyrite and sphalerite on population compositions, dynamics and copper extraction efficiency in chalcopyrite bioleaching process. Xiao Y; Liu X; Dong W; Liang Y; Niu J; Gu Y; Ma L; Hao X; Zhang X; Xu Z; Yin H Arch Microbiol; 2017 Jul; 199(5):757-766. PubMed ID: 28260145 [TBL] [Abstract][Full Text] [Related]
3. Microbiological and geochemical dynamics in simulated-heap leaching of a polymetallic sulfide ore. Wakeman K; Auvinen H; Johnson DB Biotechnol Bioeng; 2008 Nov; 101(4):739-50. PubMed ID: 18496880 [TBL] [Abstract][Full Text] [Related]
4. Bioleaching of chalcopyrite concentrate using Leptospirillum ferriphilum, Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans in a continuous bubble column reactor. Xia L; Yin C; Dai S; Qiu G; Chen X; Liu J J Ind Microbiol Biotechnol; 2010 Mar; 37(3):289-95. PubMed ID: 20012335 [TBL] [Abstract][Full Text] [Related]
5. The effects of Fe(II) and Fe(III) concentration and initial pH on microbial leaching of low-grade sphalerite ore in a column reactor. Mousavi SM; Yaghmaei S; Vossoughi M; Roostaazad R; Jafari A; Ebrahimi M; Chabok OH; Turunen I Bioresour Technol; 2008 May; 99(8):2840-5. PubMed ID: 17698352 [TBL] [Abstract][Full Text] [Related]
6. Effect of Introduction of Exogenous Strain Liu Y; Wang J; Hou H; Chen G; Liu H; Liu X; Shen L Front Microbiol; 2019; 10():3034. PubMed ID: 32010095 [TBL] [Abstract][Full Text] [Related]
7. Redox stress response and UV tolerance in the acidophilic iron-oxidizing bacteria Leptospirillum ferriphilum and Acidithiobacillus ferrooxidans. Farías R; Norambuena J; Ferrer A; Camejo P; Zapata C; Chávez R; Orellana O; Levicán G Res Microbiol; 2021; 172(3):103833. PubMed ID: 33901608 [TBL] [Abstract][Full Text] [Related]
8. Bioleaching of arsenopyrite by mixed cultures of iron-oxidizing and sulfur-oxidizing microorganisms. Deng S; Gu G; Wu Z; Xu X Chemosphere; 2017 Oct; 185():403-411. PubMed ID: 28710989 [TBL] [Abstract][Full Text] [Related]
9. Comparison analysis of coal biodesulfurization and coal's pyrite bioleaching with Acidithiobacillus ferrooxidans. Hong FF; He H; Liu JY; Tao XX; Zheng L; Zhao YD ScientificWorldJournal; 2013; 2013():184964. PubMed ID: 24288464 [TBL] [Abstract][Full Text] [Related]
10. Culture-dependent hunt and characterization of iron-oxidizing bacteria in Baiyin Copper Mine, China, and their application in metals extraction. Sajjad W; Zheng G; Ma X; Rafiq M; Irfan M; Xu W; Ali B J Basic Microbiol; 2019 Mar; 59(3):323-336. PubMed ID: 30592309 [TBL] [Abstract][Full Text] [Related]
11. The effect of CO2 availability on the growth, iron oxidation and CO2-fixation rates of pure cultures of Leptospirillum ferriphilum and Acidithiobacillus ferrooxidans. Bryan CG; Davis-Belmar CS; van Wyk N; Fraser MK; Dew D; Rautenbach GF; Harrison ST Biotechnol Bioeng; 2012 Jul; 109(7):1693-703. PubMed ID: 22383083 [TBL] [Abstract][Full Text] [Related]
12. Acidophilic Iron- and Sulfur-Oxidizing Bacteria, Yi Q; Wu S; Southam G; Robertson L; You F; Liu Y; Wang S; Saha N; Webb R; Wykes J; Chan TS; Lu YR; Huang L Environ Sci Technol; 2021 Jun; 55(12):8020-8034. PubMed ID: 34043324 [TBL] [Abstract][Full Text] [Related]
13. Biooxidation of pyrite by defined mixed cultures of moderately thermophilic acidophiles in pH-controlled bioreactors: significance of microbial interactions. Okibe N; Johnson DB Biotechnol Bioeng; 2004 Sep; 87(5):574-83. PubMed ID: 15352055 [TBL] [Abstract][Full Text] [Related]
14. Growth of Leptospirillum ferriphilum in sulfur medium in co-culture with Acidithiobacillus caldus. Smith SL; Johnson DB Extremophiles; 2018 Mar; 22(2):327-333. PubMed ID: 29330649 [TBL] [Abstract][Full Text] [Related]
15. Bioleaching of copper- and zinc-bearing ore using consortia of indigenous iron-oxidizing bacteria. Sajjad W; Zheng G; Zhang G; Ma X; Xu W; Khan S Extremophiles; 2018 Nov; 22(6):851-863. PubMed ID: 30027412 [TBL] [Abstract][Full Text] [Related]
16. The bioleaching potential of a bacterial consortium. Latorre M; Cortés MP; Travisany D; Di Genova A; Budinich M; Reyes-Jara A; Hödar C; González M; Parada P; Bobadilla-Fazzini RA; Cambiazo V; Maass A Bioresour Technol; 2016 Oct; 218():659-66. PubMed ID: 27416516 [TBL] [Abstract][Full Text] [Related]
17. Automated Microscopic Analysis of Metal Sulfide Colonization by Acidophilic Microorganisms. Bellenberg S; Buetti-Dinh A; Galli V; Ilie O; Herold M; Christel S; Boretska M; Pivkin IV; Wilmes P; Sand W; Vera M; Dopson M Appl Environ Microbiol; 2018 Oct; 84(20):. PubMed ID: 30076195 [TBL] [Abstract][Full Text] [Related]
18. A designed moderately thermophilic consortia with a better performance for leaching high grade fine lead-zinc sulfide ore. Zhou S; Liao X; Li S; Fang X; Guan Z; Ye M; Sun S J Environ Manage; 2022 Feb; 303():114192. PubMed ID: 34861501 [TBL] [Abstract][Full Text] [Related]
20. Enhancing column bioleaching of chalcocite by isolated iron metabolism partners Leptospirillum ferriphilum/Acidiphilium sp. coupling with systematically utilizing cellulosic waste. Huo X; Liu J; Hong X; Bai H; Chen Z; Che J; Yang H; Tong Y; Feng S Bioresour Technol; 2024 Feb; 394():130193. PubMed ID: 38081468 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]