BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 1933378)

  • 1. Lithium reduces ocular dominance plasticity in kitten visual cortex.
    Kasamatsu T; Ohashi T; Imamura K
    Brain Res; 1991 Aug; 558(1):157-62. PubMed ID: 1933378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gliotoxin-induced suppression of ocular dominance plasticity in kitten visual cortex.
    Imamura K; Mataga N; Watanabe Y
    Neurosci Res; 1993 Feb; 16(2):117-24. PubMed ID: 7683395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of intracortical infusion of anticholinergic drugs on neuronal plasticity in kitten striate cortex.
    Gu Q; Singer W
    Eur J Neurosci; 1993 May; 5(5):475-85. PubMed ID: 8261123
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Concentration-dependent suppression by beta-adrenergic antagonists of the shift in ocular dominance following monocular deprivation in kitten visual cortex.
    Shirokawa T; Kasamatsu T
    Neuroscience; 1986 Aug; 18(4):1035-46. PubMed ID: 2876398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Involvement of serotonin in developmental plasticity of kitten visual cortex.
    Gu Q; Singer W
    Eur J Neurosci; 1995 Jun; 7(6):1146-53. PubMed ID: 7582087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of nerve growth factor on neuronal plasticity of the kitten visual cortex.
    Carmignoto G; Canella R; Candeo P; Comelli MC; Maffei L
    J Physiol; 1993 May; 464():343-60. PubMed ID: 8229806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blockade of serotonin-2C receptors by mesulergine reduces ocular dominance plasticity in kitten visual cortex.
    Wang Y; Gu Q; Cynader MS
    Exp Brain Res; 1997 Apr; 114(2):321-8. PubMed ID: 9166921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of nerve growth factor on visual cortical plasticity require afferent electrical activity.
    Caleo M; Lodovichi C; Maffei L
    Eur J Neurosci; 1999 Aug; 11(8):2979-84. PubMed ID: 10457192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stimulus for rapid ocular dominance plasticity in visual cortex.
    Rittenhouse CD; Siegler BA; Voelker CC; Shouval HZ; Paradiso MA; Bear MF
    J Neurophysiol; 2006 May; 95(5):2947-50. PubMed ID: 16481452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural plasticity maintained high by activation of cyclic AMP-dependent protein kinase: an age-independent, general mechanism in cat striate cortex.
    Imamura K; Kasamatsu T; Tanaka S
    Neuroscience; 2007 Jun; 147(2):508-21. PubMed ID: 17544224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Injection of MK-801 affects ocular dominance shifts more than visual activity.
    Daw NW; Gordon B; Fox KD; Flavin HJ; Kirsch JD; Beaver CJ; Ji Q; Reid SN; Czepita D
    J Neurophysiol; 1999 Jan; 81(1):204-15. PubMed ID: 9914281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Roles of N-methyl-D-aspartate receptors in ocular dominance plasticity in developing visual cortex: re-evaluation.
    Kasamatsu T; Imamura K; Mataga N; Hartveit E; Heggelund U; Heggelund P
    Neuroscience; 1998 Feb; 82(3):687-700. PubMed ID: 9483528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. cAMP/Ca2+ response element-binding protein function is essential for ocular dominance plasticity.
    Mower AF; Liao DS; Nestler EJ; Neve RL; Ramoa AS
    J Neurosci; 2002 Mar; 22(6):2237-45. PubMed ID: 11896163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reemergence of ocular dominance plasticity during recovery from the effects of propranolol infused in kitten visual cortex.
    Shirokawa T; Kasamatsu T
    Exp Brain Res; 1987; 68(3):466-76. PubMed ID: 2826211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential effects of neurotrophins on ocular dominance plasticity in developing and adult cat visual cortex.
    Galuske RA; Kim DS; Castrén E; Singer W
    Eur J Neurosci; 2000 Sep; 12(9):3315-30. PubMed ID: 10998115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Involvement of beta-adrenoreceptors in the shift of ocular dominance after monocular deprivation.
    Kasamatsu T; Shirokawa T
    Exp Brain Res; 1985; 59(3):507-14. PubMed ID: 2993012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Infusion of nerve growth factor (NGF) into kitten visual cortex increases immunoreactivity for NGF, NGF receptors, and choline acetyltransferase in basal forebrain without affecting ocular dominance plasticity or column development.
    Silver MA; Fagiolini M; Gillespie DC; Howe CL; Frank MG; Issa NP; Antonini A; Stryker MP
    Neuroscience; 2001; 108(4):569-85. PubMed ID: 11738495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Blockade of intracortical inhibition in kitten striate cortex: effects on receptive field properties and associated loss of ocular dominance plasticity.
    Ramoa AS; Paradiso MA; Freeman RD
    Exp Brain Res; 1988; 73(2):285-96. PubMed ID: 3215305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Noradrenaline and functional plasticity in kitten visual cortex: a re-examination.
    Adrien J; Blanc G; Buisseret P; Frégnac Y; Gary-Bobo E; Imbert M; Tassin JP; Trotter Y
    J Physiol; 1985 Oct; 367():73-98. PubMed ID: 3932646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vascular endothelial growth factor B prevents the shift in the ocular dominance distribution of visual cortical neurons in monocularly deprived rats.
    Shan L; Yong H; Song Q; Wei Y; Qin R; Zhang G; Xu M; Zhang S
    Exp Eye Res; 2013 Apr; 109():17-21. PubMed ID: 23370270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.