These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 1933397)
1. Convergence from the preoptic area and arcuate nucleus to the median eminence in acupuncture and nonacupuncture point stimulation analgesia. Takeshige C; Zhao WH; Guo SY Brain Res Bull; 1991 May; 26(5):771-8. PubMed ID: 1933397 [TBL] [Abstract][Full Text] [Related]
2. Dopaminergic transmission in the hypothalamic arcuate nucleus to produce acupuncture analgesia in correlation with the pituitary gland. Takeshige C; Tsuchiya M; Guo SY; Sato T Brain Res Bull; 1991 Jan; 26(1):113-22. PubMed ID: 1849781 [TBL] [Abstract][Full Text] [Related]
3. Positive feedback action of pituitary beta-endorphin on acupuncture analgesia afferent pathway. Takeshige C; Nakamura A; Asamoto S; Arai T Brain Res Bull; 1992 Jul; 29(1):37-44. PubMed ID: 1324098 [TBL] [Abstract][Full Text] [Related]
4. Analgesia produced by pituitary ACTH and dopaminergic transmission in the arcuate. Takeshige C; Tsuchiya M; Zhao W; Guo S Brain Res Bull; 1991 May; 26(5):779-88. PubMed ID: 1657317 [TBL] [Abstract][Full Text] [Related]
5. Analgesia inhibitory system involvement in nonacupuncture point-stimulation-produced analgesia. Takeshige C; Kobori M; Hishida F; Luo CP; Usami S Brain Res Bull; 1992 Mar; 28(3):379-91. PubMed ID: 1591597 [TBL] [Abstract][Full Text] [Related]
6. Differentiation of acupuncture and nonacupuncture points by difference of associated opioids in the spinal cord in production of analgesia by acupuncture and nonacupuncture point stimulation, and relations between sodium and those opioids. Takeshige C; Luo CP; Hishida F; Igarashi O Acupunct Electrother Res; 1990; 15(3-4):193-209. PubMed ID: 1982042 [TBL] [Abstract][Full Text] [Related]
7. Differentiation between acupuncture and non-acupuncture points by association with analgesia inhibitory system. Takeshige C Acupunct Electrother Res; 1985; 10(3):195-202. PubMed ID: 2866673 [TBL] [Abstract][Full Text] [Related]
8. Morphine analgesia mediated by activation of the acupuncture-analgesia-producing system. Sato T; Takeshige C; Shimizu S Acupunct Electrother Res; 1991; 16(1-2):13-26. PubMed ID: 1674831 [TBL] [Abstract][Full Text] [Related]
9. Descending pain inhibitory system involved in acupuncture analgesia. Takeshige C; Sato T; Mera T; Hisamitsu T; Fang J Brain Res Bull; 1992 Nov; 29(5):617-34. PubMed ID: 1422859 [TBL] [Abstract][Full Text] [Related]
10. Inhibition of the analgesia inhibitory system by D-phenylalanine and proglumide. Takeshige C; Mera H; Hisamitsu T; Tanaka M; Hishida F Brain Res Bull; 1991 Mar; 26(3):385-91. PubMed ID: 2049604 [TBL] [Abstract][Full Text] [Related]
11. Comparable surges of luteinizing hormone induced by preoptic or medial basal tuberal electrical stimulation in spontaneously persistent estrous or cyclic proestrous rats. Everett JW; Tyrey L Endocrinology; 1983 Jun; 112(6):2015-20. PubMed ID: 6682756 [TBL] [Abstract][Full Text] [Related]
12. Influence of midbrain stimulation on the excitability of neurons in the medial hypothalamus of the rat. Pittman QJ; Blume HW; Kearney RE; Renaud LP Brain Res; 1979 Sep; 174(1):39-53. PubMed ID: 487122 [TBL] [Abstract][Full Text] [Related]
13. Amygdala neurones: converging synaptic inputs produced by median eminence and medial preoptic area stimulations in rats. Hamamura M; Yagi K J Physiol; 1980 Mar; 300():515-23. PubMed ID: 7381795 [TBL] [Abstract][Full Text] [Related]
14. Effects of estrous cycle, estrogen and progesterone administration on the antidromic and orthodromic reaction threshold of medial preoptic neurons in the rat hypothalamus. Watanabe T J Vet Med Sci; 1992 Aug; 54(4):723-9. PubMed ID: 1391184 [TBL] [Abstract][Full Text] [Related]
15. The acupuncture point and its connecting central pathway for producing acupuncture analgesia. Takeshige C; Oka K; Mizuno T; Hisamitsu T; Luo CP; Kobori M; Mera H; Fang TQ Brain Res Bull; 1993; 30(1-2):53-67. PubMed ID: 8420635 [TBL] [Abstract][Full Text] [Related]
16. The bovine preoptic area and median eminence: sites of opioid inhibition of luteinizing hormone-releasing hormone secretion. Leshin LS; Rund LA; Kraeling RR; Kiser TE J Anim Sci; 1991 Sep; 69(9):3733-46. PubMed ID: 1657852 [TBL] [Abstract][Full Text] [Related]
17. Influence of medial preoptic-anterior hypothalamic area stimulation of the excitability of mediobasal hypothalamic neurones in the rat. Renaud LP J Physiol; 1977 Jan; 264(2):541-64. PubMed ID: 839467 [TBL] [Abstract][Full Text] [Related]
18. Medial preoptic nucleus neurons: inhibition and facilitation of spontaneous activity following stimulation of the median eminence in female rats. Yagi K; Sawaki Y Brain Res; 1977 Jan; 120(2):342-6. PubMed ID: 832127 [No Abstract] [Full Text] [Related]
19. Naloxone injections into the periaqueductal grey area and arcuate nucleus block analgesia in defeated mice. Miczek KA; Thompson ML; Shuster L Psychopharmacology (Berl); 1985; 87(1):39-42. PubMed ID: 2932763 [TBL] [Abstract][Full Text] [Related]
20. Reciprocal connections between the medial preoptic area and the midbrain periaqueductal gray in rat: a WGA-HRP and PHA-L study. Rizvi TA; Ennis M; Shipley MT J Comp Neurol; 1992 Jan; 315(1):1-15. PubMed ID: 1371779 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]