These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 19334615)

  • 41. Effects of heavy metal pollution on genetic variation and cytological disturbances in the Pinus sylvestris L. population.
    Prus-Głowacki W; Chudzińska E; Wojnicka-Połtorak A; Kozacki L; Fagiewicz K
    J Appl Genet; 2006; 47(2):99-108. PubMed ID: 16682749
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Root proliferation of Norway spruce and Scots pine in response to local magnesium supply in soil.
    Zhang J; George E
    Tree Physiol; 2009 Feb; 29(2):199-206. PubMed ID: 19203945
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Allozyme variation of seed embryos and mating system in relict populations of Scots pine (Pinus sylvestris L.) from the Kremenets Hill Ridge and Maloe Poles'e].
    Korshikov II; Kalafat LA; Lisnichuk AN; Velikorid'ko TI; Mudrik EA
    Genetika; 2011 Jul; 47(7):937-44. PubMed ID: 21938957
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Comparative study of allozyme polymorphism in groups of pine trees (Pinus sylvestris L.) with different seed productivity].
    Korshikov II; Kalafat LA
    Tsitol Genet; 2004; 38(2):9-14. PubMed ID: 15131963
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Comparative analysis of genetic heterogeneity of seed progenies in the isolated population of Pinus sylvestris var. cretacea Kalenicz. ex Kom. in Donbass].
    Korshikov II; Mudrik EA
    Tsitol Genet; 2006; 40(3):17-23. PubMed ID: 16933848
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Distributions of
    Holiaka D; Yoschenko V; Levchuk S; Kashparov V
    J Environ Radioact; 2020 Oct; 222():106319. PubMed ID: 32565416
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Influence of solar UV radiation on the nitrogen metabolism in needles of Scots pine (Pinus sylvestris L.).
    Krywult M; Smykla J; Kinnunen H; Martz F; Sutinen ML; Lakkala K; Turunen M
    Environ Pollut; 2008 Dec; 156(3):1105-11. PubMed ID: 18508165
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Radiation-population monitoring of Pinus sylvestris L. in the zone of the Chernobyl power plant].
    Kal'chenko VA; Fedotov IS; Igonina EV; Rubanovich AV; Shevchenko VA
    Radiats Biol Radioecol; 2000; 40(5):607-14. PubMed ID: 11252237
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [The genetic sequelae for plant populations of radioactive environmental pollution in connection with the Chernobyl accident].
    Shevchenko VA; Abramov VI; Kal'chenko VA; Fedotov IS; Rubanovich AV
    Radiats Biol Radioecol; 1996; 36(4):531-45. PubMed ID: 8925027
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Seasonal development of phloem in Scots pine stems].
    Antonova GF; Stasova VV
    Ontogenez; 2006; 37(5):368-83. PubMed ID: 17066978
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Foliar application of GA3 during terminal long-shoot bud development stimulates shoot apical meristem activity in Pinus sylvestris seedlings.
    MacDonald JE; Little CH
    Tree Physiol; 2006 Oct; 26(10):1271-6. PubMed ID: 16815829
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Aging in Pinus sylvestris L. seeds: changes in viability and lipids.
    Tammela P; Hopia A; Hiltunen R; Vuorela H; Nygren M
    Biochem Soc Trans; 2000 Dec; 28(6):878-9. PubMed ID: 11171242
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effects of radiation on radial growth of Scots pine in areas highly affected by the Chernobyl accident.
    Holiaka D; Fesenko S; Kashparov V; Protsak V; Levchuk S; Holiaka M
    J Environ Radioact; 2020 Oct; 222():106320. PubMed ID: 32892896
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Fungal Infection Increases the Rate of Somatic Mutation in Scots Pine (Pinus sylvestris L.).
    Ranade SS; Ganea LS; Razzak AM; García Gil MR
    J Hered; 2015; 106(4):386-94. PubMed ID: 25890976
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Scots pine (Pinus sylvestris) bark composition and degradation by fungi: potential substrate for bioremediation.
    Valentín L; Kluczek-Turpeinen B; Willför S; Hemming J; Hatakka A; Steffen K; Tuomela M
    Bioresour Technol; 2010 Apr; 101(7):2203-9. PubMed ID: 20005699
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A dose rate causes no fluctuating asymmetry indexes changes in silver birch (Betula pendula (L.) Roth.) leaves and Scots pine (Pinus sylvestris L.) needles in the Chernobyl Exclusion Zone.
    Kashparova E; Levchuk S; Morozova V; Kashparov V
    J Environ Radioact; 2020 Jan; 211():105731. PubMed ID: 29880300
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Development of New Mitochondrial DNA Markers in Scots Pine (Pinus sylvestris L.) for Population Genetic and Phylogeographic Studies].
    Semerikov VL; Putintseva YA; Oreshkova NV; Semerikova SA; Krutovsky KV
    Genetika; 2015 Dec; 51(12):1386-90. PubMed ID: 27055298
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Induced accumulation of phenolics and sawfly performance in Scots pine in response to previous defoliation.
    Roitto M; Rautio P; Markkola A; Julkunen-Tiitto R; Varama M; Saravesi K; Tuomi J
    Tree Physiol; 2009 Feb; 29(2):207-16. PubMed ID: 19203946
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Genetic polymorphism for GOT and GDH loci of Scotch pine seed embryos in the area of nitrogen emissions from the chemical enterprise].
    Korshikov II; Demkovich AE
    Tsitol Genet; 2011; 45(6):28-33. PubMed ID: 22329160
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Morphological abnormalities among the offspring of irradiated pines (pinus sylvestris L.) from chernobyl populations].
    Igonina EV; Fedotov IS; Korotkevich AIu; Rubanovich AV
    Radiats Biol Radioecol; 2012; 52(1):90-102. PubMed ID: 22568019
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.