These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 19334679)

  • 1. Toward homogeneous erythropoietin: chemical synthesis of the Ala1-Gly28 glycopeptide domain by "alanine" ligation.
    Kan C; Trzupek JD; Wu B; Wan Q; Chen G; Tan Z; Yuan Y; Danishefsky SJ
    J Am Chem Soc; 2009 Apr; 131(15):5438-43. PubMed ID: 19334679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward homogeneous erythropoietin: fine tuning of the C-terminal acyl donor in the chemical synthesis of the Cys29-Gly77 glycopeptide domain.
    Yuan Y; Chen J; Wan Q; Tan Z; Chen G; Kan C; Danishefsky SJ
    J Am Chem Soc; 2009 Apr; 131(15):5432-7. PubMed ID: 20560636
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward homogeneous erythropoietin: non-NCL-based chemical synthesis of the Gln78-Arg166 glycopeptide domain.
    Tan Z; Shang S; Halkina T; Yuan Y; Danishefsky SJ
    J Am Chem Soc; 2009 Apr; 131(15):5424-31. PubMed ID: 19334683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical synthesis of erythropoietin glycoforms for insights into the relationship between glycosylation pattern and bioactivity.
    Murakami M; Kiuchi T; Nishihara M; Tezuka K; Okamoto R; Izumi M; Kajihara Y
    Sci Adv; 2016 Jan; 2(1):e1500678. PubMed ID: 26824070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing the stability of nonglycosylated wild-type erythropoietin protein via reiterative alanine ligations.
    Brailsford JA; Danishefsky SJ
    Proc Natl Acad Sci U S A; 2012 May; 109(19):7196-201. PubMed ID: 22499784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Total synthesis of erythropoietin through the development and exploitation of enabling synthetic technologies.
    Payne RJ
    Angew Chem Int Ed Engl; 2013 Jan; 52(2):505-7. PubMed ID: 23180667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemoenzymatic Synthesis of HIV-1 Glycopeptide Antigens.
    Zong G; Li C; Wang LX
    Methods Mol Biol; 2020; 2103():249-262. PubMed ID: 31879931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical and Enzymatic Synthesis of Sialylated Glycoforms of Human Erythropoietin.
    Hessefort H; Gross A; Seeleithner S; Hessefort M; Kirsch T; Perkams L; Bundgaard KO; Gottwald K; Rau D; Graf CGF; Rozanski E; Weidler S; Unverzagt C
    Angew Chem Int Ed Engl; 2021 Dec; 60(49):25922-25932. PubMed ID: 34523784
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uncovering a latent ligation site for glycopeptide synthesis.
    Okamoto R; Kajihara Y
    Angew Chem Int Ed Engl; 2008; 47(29):5402-6. PubMed ID: 18548471
    [No Abstract]   [Full Text] [Related]  

  • 10. Convenient synthesis of a sialylglycopeptide-thioester having an intact and homogeneous complex-type disialyl-oligosaccharide.
    Kajihara Y; Yoshihara A; Hirano K; Yamamoto N
    Carbohydr Res; 2006 Jul; 341(10):1333-40. PubMed ID: 16701588
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strategies for the highly efficient synthesis of erythropoietin N-glycopeptide hydrazides.
    Hessefort M; Hessefort H; Seeleithner S; Gross A; Lott M; Rau D; Kern L; Unverzagt C
    J Pept Sci; 2021 Jan; 27(1):e3283. PubMed ID: 32885544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sugar-assisted glycopeptide ligation with complex oligosaccharides: scope and limitations.
    Bennett CS; Dean SM; Payne RJ; Ficht S; Brik A; Wong CH
    J Am Chem Soc; 2008 Sep; 130(36):11945-52. PubMed ID: 18698778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ligation-desulfurization: a powerful combination in the synthesis of peptides and glycopeptides.
    Rohde H; Seitz O
    Biopolymers; 2010; 94(4):551-9. PubMed ID: 20593472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solid phase synthesis of the fibronectin glycopeptide V(Gal beta 3GalNAc alpha)THPGY, its beta analogue, and the corresponding unglycosylated peptide.
    Lüning B; Norberg T; Rivera-Baeza C; Tejbrant J
    Glycoconj J; 1991 Dec; 8(6):450-5. PubMed ID: 1823621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. N-Linked Glycosyl Auxiliary-Mediated Native Chemical Ligation on Aspartic Acid: Application towards N-Glycopeptide Synthesis.
    Chai H; Le Mai Hoang K; Vu MD; Pasunooti K; Liu CF; Liu XW
    Angew Chem Int Ed Engl; 2016 Aug; 55(35):10363-7. PubMed ID: 27444333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient substitution reaction from cysteine to the serine residue of glycosylated polypeptide: repetitive peptide segment ligation strategy and the synthesis of glycosylated tetracontapeptide having acid labile sialyl-T(N) antigens.
    Okamoto R; Souma S; Kajihara Y
    J Org Chem; 2009 Mar; 74(6):2494-501. PubMed ID: 19236026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational effects of the non-natural alpha-methylserine on small peptides and glycopeptides.
    Fernández-Tejada A; Corzana F; Busto JH; Avenoza A; Peregrina JM
    J Org Chem; 2009 Dec; 74(24):9305-13. PubMed ID: 19924838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A two-step enzymatic glycosylation of polypeptides with complex N-glycans.
    Lomino JV; Naegeli A; Orwenyo J; Amin MN; Aebi M; Wang LX
    Bioorg Med Chem; 2013 Apr; 21(8):2262-2270. PubMed ID: 23477942
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of MUC1 glycopeptide thioesters and ligation via direct aminolysis.
    Wilkinson BL; Chun CK; Payne RJ
    Biopolymers; 2011; 96(2):137-46. PubMed ID: 20564042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing molecular interactions within class II MHC Aq/glycopeptide/T-cell receptor complexes associated with collagen-induced arthritis.
    Andersson IE; Dzhambazov B; Holmdahl R; Linusson A; Kihlberg J
    J Med Chem; 2007 Nov; 50(23):5627-43. PubMed ID: 17944452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.