BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 19334846)

  • 1. The electronic structure of oxygen atom vacancy and hydroxyl impurity defects on titanium dioxide (110) surface.
    Minato T; Sainoo Y; Kim Y; Kato HS; Aika K; Kawai M; Zhao J; Petek H; Huang T; He W; Wang B; Wang Z; Zhao Y; Yang J; Hou JG
    J Chem Phys; 2009 Mar; 130(12):124502. PubMed ID: 19334846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Density functional study of the interaction between small Au clusters, Au(n) (n=1-7) and the rutile TiO2 surface. II. Adsorption on a partially reduced surface.
    Chrétien S; Metiu H
    J Chem Phys; 2007 Dec; 127(24):244708. PubMed ID: 18163696
    [TBL] [Abstract][Full Text] [Related]  

  • 3. O2 evolution on a clean partially reduced rutile TiO2(110) surface and on the same surface precovered with Au1 and Au2: the importance of spin conservation.
    Chrétien S; Metiu H
    J Chem Phys; 2008 Aug; 129(7):074705. PubMed ID: 19044790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Charge compensation in trivalent cation doped bulk rutile TiO2.
    Iwaszuk A; Nolan M
    J Phys Condens Matter; 2011 Aug; 23(33):334207. PubMed ID: 21813953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cationic and anionic vacancies on the NiO(100) surface: DFT+U and hybrid functional density functional theory calculations.
    Ferrari AM; Pisani C; Cinquini F; Giordano L; Pacchioni G
    J Chem Phys; 2007 Nov; 127(17):174711. PubMed ID: 17994846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of surface and subsurface point defects for chemical model studies on TiO2: a first-principles theoretical study of formaldehyde bonding on rutile TiO2(110).
    Haubrich J; Kaxiras E; Friend CM
    Chemistry; 2011 Apr; 17(16):4496-506. PubMed ID: 21433119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical study of the structure and optical properties of carbon-doped rutile and anatase titanium oxides.
    Kamisaka H; Adachi T; Yamashita K
    J Chem Phys; 2005 Aug; 123(8):084704. PubMed ID: 16164318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Charge distribution near bulk oxygen vacancies in cerium oxides.
    Shoko E; Smith MF; McKenzie RH
    J Phys Condens Matter; 2010 Jun; 22(22):223201. PubMed ID: 21393738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectroscopic properties of doped and defective semiconducting oxides from hybrid density functional calculations.
    Di Valentin C; Pacchioni G
    Acc Chem Res; 2014 Nov; 47(11):3233-41. PubMed ID: 24828320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electronic charge transfer between ceria surfaces and gold adatoms: a GGA+U investigation.
    Hernández NC; Grau-Crespo R; de Leeuw NH; Sanz JF
    Phys Chem Chem Phys; 2009 Jul; 11(26):5246-52. PubMed ID: 19551191
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Excess electron states in reduced bulk anatase TiO2: comparison of standard GGA, GGA+U, and hybrid DFT calculations.
    Finazzi E; Di Valentin C; Pacchioni G; Selloni A
    J Chem Phys; 2008 Oct; 129(15):154113. PubMed ID: 19045182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The electronic properties of an oxygen vacancy at ZrO(2)-terminated (001) surfaces of a cubic PbZrO(3): computer simulations from the first principles.
    Kotomin EA; Piskunov S; Zhukovskii YF; Eglitis RI; Gopejenko A; Ellis DE
    Phys Chem Chem Phys; 2008 Aug; 10(29):4258-63. PubMed ID: 18633546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Semi-conducting properties of titanium dioxide surfaces on titanium implants.
    Petersson IU; Löberg JE; Fredriksson AS; Ahlberg EK
    Biomaterials; 2009 Sep; 30(27):4471-9. PubMed ID: 19524291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the convergence of isolated neutral oxygen vacancy and divacancy properties in metal oxides using supercell models.
    Carrasco J; Lopez N; Illas F
    J Chem Phys; 2005 Jun; 122(22):224705. PubMed ID: 15974701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. O2 and vacancy diffusion on rutile(110): pathways and electronic properties.
    Tilocca A; Selloni A
    Chemphyschem; 2005 Sep; 6(9):1911-6. PubMed ID: 16080219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of intercalated Ti atom in tetrahedral or octahedral sites of titanium disulfide (001) surfaces: theoretical scanning tunneling microscopy images.
    Amzallag E; Baraille I; Martinez H; Rérat M; Gonbeau D
    J Chem Phys; 2008 Jan; 128(1):014708. PubMed ID: 18190213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Imaging the effects of individual zinc impurity atoms on superconductivity in Bi2Sr2CaCu2O8+delta.
    Pan SH; Hudson EW; Lang KM; Eisaki H; Uchida S; Davis JC
    Nature; 2000 Feb; 403(6771):746-50. PubMed ID: 10693798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure, stability, and mobility of small Pd clusters on the stoichiometric and defective TiO2 (110) surfaces.
    Zhang J; Alexandrova AN
    J Chem Phys; 2011 Nov; 135(17):174702. PubMed ID: 22070312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 'All-inclusive' imaging of the rutile TiO(2)(110) surface using NC-AFM.
    Bechstein R; González C; Schütte J; Jelínek P; Pérez R; Kühnle A
    Nanotechnology; 2009 Dec; 20(50):505703. PubMed ID: 19923656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Imaging hindered rotations of alkoxy species on TiO(2)(110).
    Zhang Z; Rousseau R; Gong J; Kay BD; Dohnálek Z
    J Am Chem Soc; 2009 Dec; 131(49):17926-32. PubMed ID: 19928856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.