BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 19334922)

  • 1. Evaluation of the irising effect of a slow-gating intensified charge-coupled device on laser-induced incandescence measurements of soot.
    Shaddix CR; Williams TC
    Rev Sci Instrum; 2009 Mar; 80(3):033702. PubMed ID: 19334922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Data processing correction of the irising effect of a fast-gating intensified charge-coupled device on laser-pulse-excited luminescence spectra.
    Ondic L; Dohnalová K; Pelant I; Zídek K; de Boer WD
    Rev Sci Instrum; 2010 Jun; 81(6):063104. PubMed ID: 20590222
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous correction of flat field and nonlinearity response of intensified charge-coupled devices.
    Williams TC; Shaddix CR
    Rev Sci Instrum; 2007 Dec; 78(12):123702. PubMed ID: 18163732
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laser-induced incandescence: detection issues.
    Vander Wal RL
    Appl Opt; 1996 Nov; 35(33):6548-59. PubMed ID: 21127679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence rejection in resonance Raman spectroscopy using a picosecond-gated intensified charge-coupled device camera.
    Efremov EV; Buijs JB; Gooijer C; Ariese F
    Appl Spectrosc; 2007 Jun; 61(6):571-8. PubMed ID: 17650366
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of soot particle vaporization effects during laser-induced incandescence with time-resolved light scattering.
    Yoder GD; Diwakar PK; Hahn DW
    Appl Opt; 2005 Jul; 44(20):4211-9. PubMed ID: 16045207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laser-induced incandescence measurements of soot in turbulent pool fires.
    Frederickson K; Kearney SP; Grasser TW
    Appl Opt; 2011 Feb; 50(4):A49-59. PubMed ID: 21283220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-camera, single-shot, time-resolved laser-induced incandescence decay imaging.
    Chen Y; Cenker E; Richardson DR; Kearney SP; Halls BR; Skeen SA; Shaddix CR; Guildenbecher DR
    Opt Lett; 2018 Nov; 43(21):5363-5366. PubMed ID: 30383008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular dynamics simulations of laser-induced incandescence of soot using an extended ReaxFF reactive force field.
    Kamat AM; van Duin AC; Yakovlev A
    J Phys Chem A; 2010 Dec; 114(48):12561-72. PubMed ID: 21067165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A calibration-independent laser-induced incandescence technique for soot measurement by detecting absolute light intensity.
    Snelling DR; Smallwood GJ; Liu F; Gülder OL; Bachalo WD
    Appl Opt; 2005 Nov; 44(31):6773-85. PubMed ID: 16270566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fractal-like Aggregates: Relation between Morphology and Physical Properties.
    Filippov AV; Zurita M; Rosner DE
    J Colloid Interface Sci; 2000 Sep; 229(1):261-273. PubMed ID: 10942568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of repetitive pulsing on multi-kHz planar laser-induced incandescence imaging in laminar and turbulent flames.
    Michael JB; Venkateswaran P; Shaddix CR; Meyer TR
    Appl Opt; 2015 Apr; 54(11):3331-44. PubMed ID: 25967321
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Soot volume fraction and particle size measurements with laser-induced incandescence.
    Mewes B; Seitzman JM
    Appl Opt; 1997 Jan; 36(3):709-17. PubMed ID: 18250729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laser-induced incandescence: excitation intensity.
    Vander Wal RL; Jensen KA
    Appl Opt; 1998 Mar; 37(9):1607-16. PubMed ID: 18268755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laser-induced incandescence applied to droplet combustion.
    Wal RL; Dietrich DL
    Appl Opt; 1995 Feb; 34(6):1103-7. PubMed ID: 21037639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast-gated intensified charge-coupled device camera to record time-resolved fluorescence spectra of tryptophan.
    Stortelder A; Buijs JB; Bulthuis J; Gooijer C; van der Zwan G
    Appl Spectrosc; 2004 Jun; 58(6):705-10. PubMed ID: 15198823
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A mobile system for a comprehensive online-characterization of nanoparticle aggregates based on wide-angle light scattering and laser-induced incandescence.
    Huber FJ; Altenhoff M; Will S
    Rev Sci Instrum; 2016 May; 87(5):053102. PubMed ID: 27250387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Size distributions of nanoscaled particles and gas temperatures from time-resolved laser-induced-incandescence measurements.
    Lehre T; Jungfleisch B; Suntz R; Bockhorn H
    Appl Opt; 2003 Apr; 42(12):2021-30. PubMed ID: 12716142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laser-induced incandescence for soot particle size measurements in premixed flat flames.
    Axelsson B; Collin R; Bengtsson PE
    Appl Opt; 2000 Jul; 39(21):3683-90. PubMed ID: 18349943
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Light scattering and extinction measurements combined with laser-induced incandescence for the real-time determination of soot mass absorption cross section.
    Wei Y; Ma L; Cao T; Zhang Q; Wu J; Buseck PR; Thompson JE
    Anal Chem; 2013 Oct; 85(19):9181-8. PubMed ID: 23971631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.