These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 19334932)

  • 1. Three-dimensional grain mapping by x-ray diffraction contrast tomography and the use of Friedel pairs in diffraction data analysis.
    Ludwig W; Reischig P; King A; Herbig M; Lauridsen EM; Johnson G; Marrow TJ; Buffière JY
    Rev Sci Instrum; 2009 Mar; 80(3):033905. PubMed ID: 19334932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characteristics of Friedel pairs and diffraction contrast tomography with non-perpendicular rotation axis.
    Yi Q; Li G; Zhang J; Luo SN; Fan D; Gao Z; Wang Y; Gao G; Jiang S; Jiang X
    J Synchrotron Radiat; 2015 Jul; 22(4):1062-71. PubMed ID: 26134812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Observations of intergranular stress corrosion cracking in a grain-mapped polycrystal.
    King A; Johnson G; Engelberg D; Ludwig W; Marrow J
    Science; 2008 Jul; 321(5887):382-5. PubMed ID: 18635797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison between diffraction contrast tomography and high-energy diffraction microscopy on a slightly deformed aluminium alloy.
    Renversade L; Quey R; Ludwig W; Menasche D; Maddali S; Suter RM; Borbély A
    IUCrJ; 2016 Jan; 3(Pt 1):32-42. PubMed ID: 26870379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ synchrotron X-ray multimodal experiment to study polycrystal plasticity.
    Ribart C; King A; Ludwig W; Bertoldo JPC; Proudhon H
    J Synchrotron Radiat; 2023 Mar; 30(Pt 2):379-389. PubMed ID: 36891851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved grain mapping by laboratory X-ray diffraction contrast tomography.
    Fang H; Juul Jensen D; Zhang Y
    IUCrJ; 2021 Jul; 8(Pt 4):559-573. PubMed ID: 34258005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mapping fibre orientation in complex-shaped biological systems with micrometre resolution by scanning X-ray microdiffraction.
    Seidel R; Gourrier A; Burghammer M; Riekel C; Jeronimidis G; Paris O
    Micron; 2008; 39(2):198-205. PubMed ID: 17395472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimizing laboratory X-ray diffraction contrast tomography for grain structure characterization of pure iron.
    Lindkvist A; Fang H; Juul Jensen D; Zhang Y
    J Appl Crystallogr; 2021 Feb; 54(Pt 1):99-110. PubMed ID: 33833643
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The application of eigensymmetries of face forms to anomalous scattering and twinning by merohedry in X-ray diffraction.
    Klapper H; Hahn T
    Acta Crystallogr A; 2010 May; 66(Pt 3):327-46. PubMed ID: 20404440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D grain reconstruction from laboratory diffraction contrast tomography.
    Bachmann F; Bale H; Gueninchault N; Holzner C; Lauridsen EM
    J Appl Crystallogr; 2019 Jun; 52(Pt 3):643-651. PubMed ID: 31236094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-destructive mapping of grain orientations in 3D by laboratory X-ray microscopy.
    McDonald SA; Reischig P; Holzner C; Lauridsen EM; Withers PJ; Merkle AP; Feser M
    Sci Rep; 2015 Oct; 5():14665. PubMed ID: 26494523
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visualization of grain subdivision by analysing the misorientations within a grain using electron backscatter diffraction.
    Van Boxel S; Seefeldt M; Verlinden B; Van Houtte P
    J Microsc; 2005 May; 218(Pt 2):104-14. PubMed ID: 15857372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional full-field X-ray orientation microscopy.
    Viganò N; Tanguy A; Hallais S; Dimanov A; Bornert M; Batenburg KJ; Ludwig W
    Sci Rep; 2016 Feb; 6():20618. PubMed ID: 26868303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional X-ray structural microscopy with submicrometre resolution.
    Larson BC; Yang W; Ice GE; Budai JD; Tischler JZ
    Nature; 2002 Feb; 415(6874):887-90. PubMed ID: 11859363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional EBSD study on the relationship between triple junctions and columnar grains in electrodeposited Co-Ni films.
    Bastos A; Zaefferer S; Raabe D
    J Microsc; 2008 Jun; 230(Pt 3):487-98. PubMed ID: 18503675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement and mapping of small changes of crystal orientation by electron backscattering diffraction.
    Tao X; Eades A
    Microsc Microanal; 2005 Aug; 11(4):341-53. PubMed ID: 16079018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The interpretation of indexing of high Sigma CSL grain boundaries from ceramics.
    Shih SJ; Park MB; Cockayne DJ
    J Microsc; 2007 Sep; 227(Pt 3):309-14. PubMed ID: 17760628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A system for integrated collection and analysis of crystallographic diffraction data.
    Szebenyi DM; Arvai A; Ealick S; Laiuppa JM; Nielsen C
    J Synchrotron Radiat; 1997 May; 4(Pt 3):128-35. PubMed ID: 16699219
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional mapping of a deformation field inside a nanocrystal.
    Pfeifer MA; Williams GJ; Vartanyants IA; Harder R; Robinson IK
    Nature; 2006 Jul; 442(7098):63-6. PubMed ID: 16823449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of three-dimensional orientations of ferroelectric single crystals by an improved rotating orientation x-ray diffraction method.
    Li F; Jin L; Xu Z; Guo Z
    Rev Sci Instrum; 2009 Aug; 80(8):085106. PubMed ID: 19725680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.