BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 19336285)

  • 21. [Single-trial estimation of visual evoked potentials in single channel single-trial estimation].
    Guan J; Chen Y; Huang M
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Apr; 23(2):252-6. PubMed ID: 16706341
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multivariate analysis of full-term neonatal polysomnographic data.
    Gerla V; Paul K; Lhotska L; Krajca V
    IEEE Trans Inf Technol Biomed; 2009 Jan; 13(1):104-10. PubMed ID: 19129029
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Statistics over features: EEG signals analysis.
    Derya Ubeyli E
    Comput Biol Med; 2009 Aug; 39(8):733-41. PubMed ID: 19555931
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Use of the discriminant Fourier-derived cepstrum with feature-level post-processing for surface electromyographic signal classification.
    Chen X; Zhu X; Zhang D
    Physiol Meas; 2009 Dec; 30(12):1399-413. PubMed ID: 19887720
    [TBL] [Abstract][Full Text] [Related]  

  • 25. EEG artifact elimination by extraction of ICA-component features using image processing algorithms.
    Radüntz T; Scouten J; Hochmuth O; Meffert B
    J Neurosci Methods; 2015 Mar; 243():84-93. PubMed ID: 25666892
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Learning discrimination trajectories in EEG sensor space: application to inferring task difficulty.
    Luo A; Sajda P
    J Neural Eng; 2006 Mar; 3(1):L1-6. PubMed ID: 16510933
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Machine learning for real-time single-trial EEG-analysis: from brain-computer interfacing to mental state monitoring.
    Müller KR; Tangermann M; Dornhege G; Krauledat M; Curio G; Blankertz B
    J Neurosci Methods; 2008 Jan; 167(1):82-90. PubMed ID: 18031824
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A prior neurophysiologic knowledge free tensor-based scheme for single trial EEG classification.
    Li J; Zhang L; Tao D; Sun H; Zhao Q
    IEEE Trans Neural Syst Rehabil Eng; 2009 Apr; 17(2):107-15. PubMed ID: 19273039
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fuzzy support vector machine for classification of EEG signals using wavelet-based features.
    Xu Q; Zhou H; Wang Y; Huang J
    Med Eng Phys; 2009 Sep; 31(7):858-65. PubMed ID: 19487151
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multimodal biometric system using rank-level fusion approach.
    Monwar MM; Gavrilova ML
    IEEE Trans Syst Man Cybern B Cybern; 2009 Aug; 39(4):867-78. PubMed ID: 19336340
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Combined distributed source and single-trial EEG-fMRI modeling: application to effortful decision making processes.
    Esposito F; Mulert C; Goebel R
    Neuroimage; 2009 Aug; 47(1):112-21. PubMed ID: 19361566
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Classifying depression patients and normal subjects using machine learning techniques and nonlinear features from EEG signal.
    Hosseinifard B; Moradi MH; Rostami R
    Comput Methods Programs Biomed; 2013 Mar; 109(3):339-45. PubMed ID: 23122719
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Automatic EEG artifact removal: a weighted support vector machine approach with error correction.
    Shao SY; Shen KQ; Ong CJ; Wilder-Smith EP; Li XP
    IEEE Trans Biomed Eng; 2009 Feb; 56(2):336-44. PubMed ID: 19272915
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Single-trial classification of EEG in a visual object task using ICA and machine learning.
    Stewart AX; Nuthmann A; Sanguinetti G
    J Neurosci Methods; 2014 May; 228():1-14. PubMed ID: 24613798
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Brain activity-based image classification from rapid serial visual presentation.
    Bigdely-Shamlo N; Vankov A; Ramirez RR; Makeig S
    IEEE Trans Neural Syst Rehabil Eng; 2008 Oct; 16(5):432-41. PubMed ID: 18990647
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [A P300 detection algorithm based on F-score feature selection and support vector machines].
    Yang L; Li J; Yao Y; Wu X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Feb; 25(1):23-6, 52. PubMed ID: 18435249
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Automatic spike detection in EEG by a two-stage procedure based on support vector machines.
    Acir N; Güzeliş C
    Comput Biol Med; 2004 Oct; 34(7):561-75. PubMed ID: 15369708
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Automatic temporal segment detection and affect recognition from face and body display.
    Gunes H; Piccardi M
    IEEE Trans Syst Man Cybern B Cybern; 2009 Feb; 39(1):64-84. PubMed ID: 19068431
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A new mode of communication between man and his surroundings.
    Keirn ZA; Aunon JI
    IEEE Trans Biomed Eng; 1990 Dec; 37(12):1209-14. PubMed ID: 2149711
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Decoding a bistable percept with integrated time-frequency representation of single-trial local field potential.
    Wang Z; Logothetis NK; Liang H
    J Neural Eng; 2008 Dec; 5(4):433-42. PubMed ID: 18971518
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.