BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 19336580)

  • 21. Agent-based and continuous models of hopper bands for the Australian plague locust: How resource consumption mediates pulse formation and geometry.
    Bernoff AJ; Culshaw-Maurer M; Everett RA; Hohn ME; Strickland WC; Weinburd J
    PLoS Comput Biol; 2020 May; 16(5):e1007820. PubMed ID: 32365072
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inertial dynamics of an active Brownian particle.
    Mayer Martins J; Wittkowski R
    Phys Rev E; 2022 Sep; 106(3-1):034616. PubMed ID: 36266913
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Coarse graining from coarse-grained descriptions.
    Español P; Vázquez F
    Philos Trans A Math Phys Eng Sci; 2002 Mar; 360(1792):383-94. PubMed ID: 16210186
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nonlinear time-periodic models of the longitudinal flight dynamics of desert locusts Schistocerca gregaria.
    Taylor GK; Zbikowski R
    J R Soc Interface; 2005 Jun; 2(3):197-221. PubMed ID: 16849180
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Adiabatic elimination of inertia of the stochastic microswimmer driven by α-stable noise.
    Noetel J; Sokolov IM; Schimansky-Geier L
    Phys Rev E; 2017 Oct; 96(4-1):042610. PubMed ID: 29347544
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interacting Particle Solutions of Fokker-Planck Equations Through Gradient-Log-Density Estimation.
    Maoutsa D; Reich S; Opper M
    Entropy (Basel); 2020 Jul; 22(8):. PubMed ID: 33286573
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Using field data to test locust migratory band collective movement models.
    Buhl J; Sword GA; Simpson SJ
    Interface Focus; 2012 Dec; 2(6):757-63. PubMed ID: 24312729
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Time delay can facilitate coherence in self-driven interacting-particle systems.
    Sun Y; Lin W; Erban R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):062708. PubMed ID: 25615130
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modelling collective motion based on the principle of agency: General framework and the case of marching locusts.
    Ried K; Müller T; Briegel HJ
    PLoS One; 2019; 14(2):e0212044. PubMed ID: 30785947
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A new continuum model for suspensions of gyrotactic micro-organisms.
    Pedley TJ; Kessler JO
    J Fluid Mech; 1990 Mar; 212():155-82. PubMed ID: 11537107
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pausing to swarm: locust intermittent motion is instrumental for swarming-related visual processing.
    Aidan Y; Bleichman I; Ayali A
    Biol Lett; 2024 Feb; 20(2):20230468. PubMed ID: 38378141
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mean-field model for nematic alignment of self-propelled rods.
    Perepelitsa M; Timofeyev I; Murphy P; Igoshin OA
    Phys Rev E; 2022 Sep; 106(3-1):034613. PubMed ID: 36266908
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Locust dynamics: behavioral phase change and swarming.
    Topaz CM; D'Orsogna MR; Edelstein-Keshet L; Bernoff AJ
    PLoS Comput Biol; 2012; 8(8):e1002642. PubMed ID: 22916003
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Information transfer in moving animal groups.
    Sumpter D; Buhl C; Biro D; Couzin I
    Theory Biosci; 2008 Jun; 127(2):177-86. PubMed ID: 18458976
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Intermittent motion in desert locusts: behavioural complexity in simple environments.
    Bazazi S; Bartumeus F; Hale JJ; Couzin ID
    PLoS Comput Biol; 2012; 8(5):e1002498. PubMed ID: 22589707
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Swarming and pattern formation due to selective attraction and repulsion.
    Romanczuk P; Schimansky-Geier L
    Interface Focus; 2012 Dec; 2(6):746-56. PubMed ID: 24312728
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fokker-Planck perspective on stochastic delay systems: exact solutions and data analysis of biological systems.
    Frank TD; Beek PJ; Friedrich R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 1):021912. PubMed ID: 14525011
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Collective dynamics of self-propelled particles with variable speed.
    Mishra S; Tunstrøm K; Couzin ID; Huepe C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011901. PubMed ID: 23005446
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Coarse-grained kinetic computations for rare events: application to micelle formation.
    Kopelevich DI; Panagiotopoulos AZ; Kevrekidis IG
    J Chem Phys; 2005 Jan; 122(4):44908. PubMed ID: 15740299
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thermal and athermal three-dimensional swarms of self-propelled particles.
    Nguyen NH; Jankowski E; Glotzer SC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011136. PubMed ID: 23005397
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.