These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

416 related articles for article (PubMed ID: 19336840)

  • 41. An empirical method for the determination of wall perturbation factors for parallel-plate chambers in high-energy electron beams.
    McEwen M; Palmans H; Williams A
    Phys Med Biol; 2006 Oct; 51(20):5167-81. PubMed ID: 17019031
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Perturbation correction factors for cylindrical ionization chambers in high-energy electron beams.
    Ono T; Araki F; Yoshiyama F
    Radiol Phys Technol; 2010 Jul; 3(2):93-7. PubMed ID: 20821081
    [TBL] [Abstract][Full Text] [Related]  

  • 43. An experimental study of recombination and polarity effect in a set of customized plane parallel ionization chambers.
    Kron T; McNiven A; Witruk B; Kenny M; Battista J
    Australas Phys Eng Sci Med; 2006 Dec; 29(4):291-9. PubMed ID: 17260582
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The calibration of parallel-plate electron ionization chambers at NPL for use with the IPEM 2003 code of practice: summary data.
    Bass G; Thomas R; Pearce J
    Phys Med Biol; 2009 Apr; 54(8):N115-24. PubMed ID: 19305037
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Direct measurement of electron beam quality conversion factors using water calorimetry.
    Renaud J; Sarfehnia A; Marchant K; McEwen M; Ross C; Seuntjens J
    Med Phys; 2015 Nov; 42(11):6357-68. PubMed ID: 26520727
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Spectral distribution of particle fluence in small field detectors and its implication on small field dosimetry.
    Benmakhlouf H; Andreo P
    Med Phys; 2017 Feb; 44(2):713-724. PubMed ID: 28032369
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Replacement correction factors for cylindrical ion chambers in electron beams.
    Wang LL; Rogers DW
    Med Phys; 2009 Oct; 36(10):4600-8. PubMed ID: 19928091
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The influence of nuclear interactions on ionization chamber perturbation factors in proton beams: FLUKA simulations supported by a Fano test.
    Lourenço A; Bouchard H; Galer S; Royle G; Palmans H
    Med Phys; 2019 Feb; 46(2):885-891. PubMed ID: 30414268
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Technical Note: On the use of cylindrical ionization chambers for electron beam reference dosimetry.
    Muir BR; McEwen MR
    Med Phys; 2017 Dec; 44(12):6641-6646. PubMed ID: 28913919
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The response of a radiophotoluminescent glass dosimeter in megavoltage photon and electron beams.
    Araki F; Ohno T
    Med Phys; 2014 Dec; 41(12):122102. PubMed ID: 25471975
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Monte Carlo calculation of perturbation correction factors for air-filled ionization chambers in clinical proton beams using TOPAS/GEANT.
    Baumann KS; Kaupa S; Bach C; Engenhart-Cabillic R; Zink K
    Z Med Phys; 2021 May; 31(2):175-191. PubMed ID: 33775521
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Monte-Carlo-based perturbation and beam quality correction factors for thimble ionization chambers in high-energy photon beams.
    Wulff J; Heverhagen JT; Zink K
    Phys Med Biol; 2008 Jun; 53(11):2823-36. PubMed ID: 18460747
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Development of a guarded liquid ionization chamber for clinical dosimetry.
    Stewart KJ; Elliott A; Seuntjens JP
    Phys Med Biol; 2007 Jun; 52(11):3089-104. PubMed ID: 17505091
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A systematic Monte Carlo study of secondary electron fluence perturbation in clinical proton beams (70-250 MeV) for cylindrical and spherical ion chambers.
    Verhaegen F; Palmans H
    Med Phys; 2001 Oct; 28(10):2088-95. PubMed ID: 11695770
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Evaluation of two water-equivalent phantom materials for output calibration of photon and electron beams.
    Liu L; Prasad SC; Bassano DA
    Med Dosim; 2003; 28(4):267-9. PubMed ID: 14684192
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Roos and NACP-02 ion chamber perturbations and water-air stopping-power ratios for clinical electron beams for energies from 4 to 22 MeV.
    Bailey M; Shipley DR; Manning JW
    Phys Med Biol; 2015 Feb; 60(3):1087-105. PubMed ID: 25586026
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Experimental determination of fluence correction factors at depths beyond dmax for a Farmer type cylindrical ionization chamber in clinical electron beams.
    Huq MS; Yue N; Suntharalingam N
    Med Phys; 1997 Oct; 24(10):1609-13. PubMed ID: 9350714
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Performance analysis and determination of the p(wall) correction factor for 60Co gamma-ray beams for Wellhöfer Roos-type plane-parallel chambers.
    Palm A; Czap L; Andreo P; Mattsson O
    Phys Med Biol; 2002 Feb; 47(4):631-40. PubMed ID: 11900195
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Wall correction factors, Pwall, for parallel-plate ionization chambers.
    Buckley LA; Rogers DW
    Med Phys; 2006 Jun; 33(6):1788-96. PubMed ID: 16872086
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Interface perturbation effects in high-energy electron beams.
    Verhaegen F
    Phys Med Biol; 2003 Mar; 48(6):687-705. PubMed ID: 12699189
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.