BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

416 related articles for article (PubMed ID: 19336842)

  • 1. Uncertainty calculations for the measurement of in vivo bone lead by x-ray fluorescence.
    O'Meara JM; Fleming DE
    Phys Med Biol; 2009 Apr; 54(8):2449-61. PubMed ID: 19336842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of covariance between the K alpha and the K beta lead peak concentrations on the uncertainty in the result of in vivo (109)Cd KXRF bone lead measurement.
    Brito JA
    Phys Med Biol; 2006 Dec; 51(23):6125-39. PubMed ID: 17110775
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Non-invasive determination of bone lead in human body using X-ray fluorescence excited by 109Cd].
    Huang SB; Tian L; Cheng HS; Pei P
    Guang Pu Xue Yu Guang Pu Fen Xi; 2004 Nov; 24(11):1470-2. PubMed ID: 15762508
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calibration of (109)Cd KXRF systems for in vivo bone lead measurements: the guiding role of the assumptions for least-squares regression in practical problem solving.
    de Brito JA; de Carvalho ML; Chettle DR
    Phys Med Biol; 2009 Feb; 54(4):919-34. PubMed ID: 19141884
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modification to the Monte Carlo N-particle code for simulating direct, in vivo measurement of stable lead in bone.
    Lodwick CJ; Spitz HB
    Health Phys; 2008 Jun; 94(6):519-26. PubMed ID: 18469585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monte Carlo simulations of in vivo K-shell X-ray fluorescence bone lead measurement and implications for radiation dosimetry.
    Ahmed N; Fleming DE; O'Meara JM
    Appl Radiat Isot; 2006 Sep; 64(9):1036-42. PubMed ID: 16766194
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of bone-density on in vivo K x-ray fluorescence bone-lead measurements.
    Lodwick CJ; Lodwick JC; Spitz HB
    Health Phys; 2011 May; 100(5):502-7. PubMed ID: 21451320
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ex vivo evaluation of a coherent normalization procedure to quantify in vivo finger strontium XRS measurements.
    Heirwegh CM; Chettle DR; Pejovicc-Milicc A
    Med Phys; 2012 Feb; 39(2):832-41. PubMed ID: 22320793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calibration of (109)Cd KXRF systems for in vivo bone lead measurements: weighted least-squares regression with different weighting functions.
    de Brito JA; Chettle DR
    Phys Med Biol; 2009 Jul; 54(13):L45-50. PubMed ID: 19521005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monte Carlo simulation of an anthropometric phantom used for calibrating in vivo K-XRF spectroscopy measurements of stable lead in bone.
    Lodwick CJ; Spitz HB
    Health Phys; 2008 Dec; 95(6):744-53. PubMed ID: 19001901
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Monte Carlo (MC) based individual calibration method for in vivo x-ray fluorescence analysis (XRF).
    Hansson M; Isaksson M
    Phys Med Biol; 2007 Apr; 52(7):2009-19. PubMed ID: 17374924
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Normalisation with coherent scatter signal: improvements in the calibration procedure of the 57Co-based in vivo XRF bone-Pb measurement.
    O'Meara JM; Börjesson J; Chettle DR; Mattsson S
    Appl Radiat Isot; 2001 Feb; 54(2):319-25. PubMed ID: 11200895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coherent normalization of finger strontium XRF measurements: feasibility and limitations.
    Zamburlini M; Pejović-Milić A; Chettle DR
    Phys Med Biol; 2008 Aug; 53(15):N307-13. PubMed ID: 18635898
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pure hydroxyapatite phantoms for the calibration of in vivo X-ray fluorescence systems of bone lead and strontium quantification.
    Da Silva E; Kirkham B; Heyd DV; Pejović-Milić A
    Anal Chem; 2013 Oct; 85(19):9189-95. PubMed ID: 23980923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A microbeam grazing-incidence approach to L-shell x-ray fluorescence measurements of lead concentration in bone and soft tissue phantoms.
    Gherase MR; Al-Hamdani S
    Physiol Meas; 2018 Mar; 39(3):035007. PubMed ID: 29406315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contamination of in vivo bone-lead measurements.
    Todd AC
    Phys Med Biol; 2000 Jan; 45(1):229-40. PubMed ID: 10661594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo K-shell X-ray fluorescence bone lead measurements in young adults.
    Ahmed N; Osika NA; Wilson AM; Fleming DE
    J Environ Monit; 2005 May; 7(5):457-62. PubMed ID: 15877166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo study of an x-ray fluorescence system to detect bone strontium non-invasively.
    Zamburlini M; Pejović-Milić A; Chettle DR; Webber CE; Gyorffy J
    Phys Med Biol; 2007 Apr; 52(8):2107-22. PubMed ID: 17404458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Corrections to "How to calculate lead concentration and concentration uncertainty in XRF in vivo bone lead analysis" by Kondrashov and Rothenberg.
    Todd AC; Moshier EL; Arnold M; Aro A; Chettle DR; McNeill FE; Nie H; Flemming DE; Stronach IM
    Appl Radiat Isot; 2003 Jan; 58(1):41-50; author reply 51-4. PubMed ID: 12485662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of lead in bone phantoms and arsenic in soft tissue phantoms using synchrotron radiation and a portable x-ray fluorescence system.
    Groskopf C; Bennett SR; Gherase MR; Fleming DEB
    Physiol Meas; 2017 Feb; 38(2):374-386. PubMed ID: 28134135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.