BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

416 related articles for article (PubMed ID: 19336842)

  • 21. Investigating coherent normalization and dosimetry for the
    Nguyen J; Pejović-Milić A; Gräfe JL
    Physiol Meas; 2020 Aug; 41(7):075014. PubMed ID: 32392547
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A method for source apportionment of lead in fine particulate matter based on individual particle analysis using a synchrotron X-ray fluorescence microprobe.
    Li X; Zhang G; Li Y
    Appl Spectrosc; 2009 Feb; 63(2):180-4. PubMed ID: 19215647
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Factors influencing uncertainties of in vivo bone lead measurement using a (109)Cd K X-ray fluorescence clover leaf geometry detector system.
    Behinaein S; Chettle DR; Marro L; Malowany M; Fisher M; Fleming DE; Healey N; Inskip M; Arbuckle TE; McNeill FE
    Environ Sci Process Impacts; 2014 Dec; 16(12):2742-51. PubMed ID: 25322174
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Calculating bone-lead measurement variance.
    Todd AC
    Environ Health Perspect; 2000 May; 108(5):383-6. PubMed ID: 10811562
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Random left censoring: a second look at bone lead concentration measurements.
    Popovic M; Nie H; Chettle DR; McNeill FE
    Phys Med Biol; 2007 Sep; 52(17):5369-78. PubMed ID: 17762092
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Monte Carlo modelling of in vivo x-ray fluorescence measurement of lead in tissue.
    Wallace JD
    Phys Med Biol; 1994 Oct; 39(10):1745-56. PubMed ID: 15551542
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An investigation of the 109Cd gamma-ray induced K-x-ray fluorescence (XRF) bone-lead measurement calibration procedure.
    Nie H; Chettle DR; McNeill FE; O'Meara JM
    Phys Med Biol; 2004 Oct; 49(19):N325-34. PubMed ID: 15552425
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [In vivo determination of Pb in human bone by using X-ray fluorescence analysis].
    Luo LQ; Xu T; Chu BB; Sun JL; Egden L; Chettle L; Wang XF; Bo Y; Liu Y; Wang SX; Tang LJ; Li YC
    Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Mar; 32(3):821-5. PubMed ID: 22582661
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improvements in the calibration of 109Cd K x-ray fluorescence systems for measuring bone lead in vivo.
    Aro AC; Todd AC; Amarasiriwardena C; Hu H
    Phys Med Biol; 1994 Dec; 39(12):2263-71. PubMed ID: 15551552
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A novel calibration for L-shell x-ray fluorescence measurements of bone lead concentration using the strontium K
    Gherase MR; Serna B; Kroeker S
    Physiol Meas; 2021 May; 42(4):. PubMed ID: 33857933
    [No Abstract]   [Full Text] [Related]  

  • 31. Calibration of the
    Da Silva E; Pejović-Milić A
    Physiol Meas; 2017 Jun; 38(6):1077-1093. PubMed ID: 28248197
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The determination of beam quality correction factors: Monte Carlo simulations and measurements.
    González-Castaño DM; Hartmann GH; Sánchez-Doblado F; Gómez F; Kapsch RP; Pena J; Capote R
    Phys Med Biol; 2009 Aug; 54(15):4723-41. PubMed ID: 19622853
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Least squares in calibration: dealing with uncertainty in x.
    Tellinghuisen J
    Analyst; 2010 Aug; 135(8):1961-9. PubMed ID: 20577693
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of the specific purpose Monte Carlo code CEARXRF for the design and use of in vivo X-ray fluorescence analysis systems for lead in bone.
    Ao Q; Lee SH; Gardner RP
    Appl Radiat Isot; 1997; 48(10-12):1403-12. PubMed ID: 9463866
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A method detection limit for potential in vivo arsenic measurements with a 50 W x-ray tube.
    Studinski RC; McNeill FE; O'Meara JM; Chettle DR
    Phys Med Biol; 2006 Nov; 51(21):N381-7. PubMed ID: 17047256
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of a new quantitative X-ray microanalysis method for electron microscopy.
    Horny P; Lifshin E; Campbell H; Gauvin R
    Microsc Microanal; 2010 Dec; 16(6):821-30. PubMed ID: 20961482
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An agreed statement on calculating lead concentration and uncertainty in XRF in vivo bone lead analysis.
    Chettle DR; Arnold ML; Aro AC; Fleming DE; Kondrashov VS; McNeill FE; Moshier EL; Nie H; Rothenberg SJ; Stronach IM; Todd AC
    Appl Radiat Isot; 2003 May; 58(5):603-5. PubMed ID: 12735978
    [No Abstract]   [Full Text] [Related]  

  • 38. Calculating the uncertainty in lead concentration for in vivo bone lead x-ray fluorescence.
    Todd AC; Chettle DR
    Phys Med Biol; 2003 Jul; 48(13):2033-9. PubMed ID: 12884934
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In vivo monitoring of bone-Pb and retrospective exposure: an assessment in occupationally exposed subjects.
    Tartari A; Casnati E; Baraldi C; Giganti M; De Rosa E; Gregorio P; Brito J
    J Trace Elem Med Biol; 1997 Nov; 11(3):179-81. PubMed ID: 9442468
    [TBL] [Abstract][Full Text] [Related]  

  • 40. One approach for doublet deconvolution to improve reliability in spectra analysis for in vivo lead measurement.
    Kondrashov VS; Rothenberg SJ
    Appl Radiat Isot; 2001 Apr; 54(4):691-4. PubMed ID: 11225706
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.