These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 19337418)

  • 1. Influence of nanophase titania topography on bacterial attachment and metabolism.
    Park MR; Banks MK; Applegate B; Webster TJ
    Int J Nanomedicine; 2008; 3(4):497-504. PubMed ID: 19337418
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Altered responses of chondrocytes to nanophase PLGA/nanophase titania composites.
    Savaiano JK; Webster TJ
    Biomaterials; 2004; 25(7-8):1205-13. PubMed ID: 14643594
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of nano-topography on bacterial attachment.
    Mitik-Dineva N; Wang J; Mocanasu RC; Stoddart PR; Crawford RJ; Ivanova EP
    Biotechnol J; 2008 Apr; 3(4):536-44. PubMed ID: 18246568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo.
    Webster TJ; Ejiofor JU
    Biomaterials; 2004 Aug; 25(19):4731-9. PubMed ID: 15120519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of bacterial cells with cluster-assembled nanostructured titania surfaces: an atomic force microscopy study.
    Singh AV; Galluzzi M; Borghi F; Indrieri M; Vyas V; Podestà A; Gade WN
    J Nanosci Nanotechnol; 2013 Jan; 13(1):77-85. PubMed ID: 23646700
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reducing bacteria and macrophage density on nanophase hydroxyapatite coated onto titanium surfaces without releasing pharmaceutical agents.
    Bhardwaj G; Yazici H; Webster TJ
    Nanoscale; 2015 May; 7(18):8416-27. PubMed ID: 25876524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The relationship between the nanostructure of titanium surfaces and bacterial attachment.
    Puckett SD; Taylor E; Raimondo T; Webster TJ
    Biomaterials; 2010 Feb; 31(4):706-13. PubMed ID: 19879645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased osteoblast function on PLGA composites containing nanophase titania.
    Webster TJ; Smith TA
    J Biomed Mater Res A; 2005 Sep; 74(4):677-86. PubMed ID: 16035065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased osteoblast adhesion on nanograined Ti modified with KRSR.
    Balasundaram G; Webster TJ
    J Biomed Mater Res A; 2007 Mar; 80(3):602-11. PubMed ID: 17031820
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of micro- and nanoscale topography on the adhesion of bacterial cells to solid surfaces.
    Hsu LC; Fang J; Borca-Tasciuc DA; Worobo RW; Moraru CI
    Appl Environ Microbiol; 2013 Apr; 79(8):2703-12. PubMed ID: 23416997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative characterization of the influence of the nanoscale morphology of nanostructured surfaces on bacterial adhesion and biofilm formation.
    Singh AV; Vyas V; Patil R; Sharma V; Scopelliti PE; Bongiorno G; Podestà A; Lenardi C; Gade WN; Milani P
    PLoS One; 2011; 6(9):e25029. PubMed ID: 21966403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics.
    Webster TJ; Ergun C; Doremus RH; Siegel RW; Bizios R
    J Biomed Mater Res; 2000 Sep; 51(3):475-83. PubMed ID: 10880091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of surface composition of titanium films on bacterial adhesion.
    Jeyachandran YL; Narayandass SK; Mangalaraj D; Bao CY; Martin PJ
    Biomed Mater; 2006 Mar; 1(1):L1-5. PubMed ID: 18458375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TiO2 nanotube surfaces: 15 nm--an optimal length scale of surface topography for cell adhesion and differentiation.
    Park J; Bauer S; Schlegel KA; Neukam FW; von der Mark K; Schmuki P
    Small; 2009 Mar; 5(6):666-71. PubMed ID: 19235196
    [No Abstract]   [Full Text] [Related]  

  • 15. Improved endothelial cell adhesion and proliferation on patterned titanium surfaces with rationally designed, micrometer to nanometer features.
    Lu J; Rao MP; MacDonald NC; Khang D; Webster TJ
    Acta Biomater; 2008 Jan; 4(1):192-201. PubMed ID: 17851147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The design of novel nanostructures on titanium by solution chemistry for an improved osteoblast response.
    Divya Rani VV; Manzoor K; Menon D; Selvamurugan N; Nair SV
    Nanotechnology; 2009 May; 20(19):195101. PubMed ID: 19420629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased viable osteoblast density in the presence of nanophase compared to conventional alumina and titania particles.
    Gutwein LG; Webster TJ
    Biomaterials; 2004 Aug; 25(18):4175-83. PubMed ID: 15046907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Organization of Pseudomonas fluorescens on chemically different nano/microstructured surfaces.
    Díaz C; Salvarezza RC; Fernández Lorenzo de Mele MA; Schilardi PL
    ACS Appl Mater Interfaces; 2010 Sep; 2(9):2530-9. PubMed ID: 20726529
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlled Attachment of Pseudomonas aeruginosa with Binary Colloidal Crystal-Based Topographies.
    Pingle H; Wang PY; Thissen H; Kingshott P
    Small; 2018 Apr; 14(14):e1703574. PubMed ID: 29484803
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Osteoblast adhesion on nanophase ceramics.
    Webster TJ; Siegel RW; Bizios R
    Biomaterials; 1999 Jul; 20(13):1221-7. PubMed ID: 10395391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.