BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 19337670)

  • 1. The aqueous photosensitized degradation of butylparaben.
    Gryglik D; Lach M; Miller JS
    Photochem Photobiol Sci; 2009 Apr; 8(4):549-55. PubMed ID: 19337670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rose bengal-sensitized photooxidation of 2-chlorophenol in water using solar simulated light.
    Miller JS
    Water Res; 2005; 39(2-3):412-22. PubMed ID: 15644250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Singlet molecular oxygen application for 2-chlorophenol removal.
    Gryglik D; Miller JS; Ledakowicz S
    J Hazard Mater; 2007 Jul; 146(3):502-7. PubMed ID: 17513046
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The photosensitized oxidation of mixture of parabens in aqueous solution.
    Gryglik D; Gmurek M
    Environ Sci Pollut Res Int; 2018 Feb; 25(4):3009-3019. PubMed ID: 25588598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid reaction of singlet molecular oxygen (1O2) with p-aminobenzoic acid (PABA) in aqueous solution.
    Allen JM; Engenolf S; Allen SK
    Biochem Biophys Res Commun; 1995 Jul; 212(3):1145-51. PubMed ID: 7626104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensitized photooxidation of thyroidal hormones. Evidence for heavy atom effect on singlet molecular oxygen [O2(1Deltag)]-mediated photoreactions.
    Miskoski S; Soltermann AT; Molina PG; Günther G; Zanocco AL; García NA
    Photochem Photobiol; 2005; 81(2):325-32. PubMed ID: 15643926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of sensitizer protonation on singlet oxygen production in aqueous and nonaqueous media.
    Arnbjerg J; Johnsen M; Nielsen CB; Jørgensen M; Ogilby PR
    J Phys Chem A; 2007 May; 111(21):4573-83. PubMed ID: 17480060
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photooxidation of alkaloids: considerable quantum yield enhancement by rose bengal-sensitized singlet molecular oxygen generation.
    Görner H; Miskolczy Z; Megyesi M; Biczók L
    Photochem Photobiol; 2011; 87(6):1315-20. PubMed ID: 21883246
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects, quenching mechanisms, and kinetics of water soluble compounds in riboflavin photosensitized oxidation of milk.
    Bradley DG; Kim HJ; Min DB
    J Agric Food Chem; 2006 Aug; 54(16):6016-20. PubMed ID: 16881710
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photosensitized generation of singlet oxygen.
    Schmidt R
    Photochem Photobiol; 2006; 82(5):1161-77. PubMed ID: 16683906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rose Bengal-photosensitized oxidation of 4-thiothymidine in aqueous medium: evidence for the reaction of the nucleoside with singlet state oxygen.
    Rizzi V; Losito I; Ventrella A; Fini P; Fraix A; Sortino S; Agostiano A; Longobardi F; Cosma P
    Phys Chem Chem Phys; 2015 Oct; 17(39):26307-19. PubMed ID: 26387532
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoproduction and direct spectral detection of singlet molecular oxygen (1O2) in keratinocytes stained with rose bengal.
    Bilski P; Kukielczak BM; Chignell CF
    Photochem Photobiol; 1998 Nov; 68(5):675-8. PubMed ID: 9825697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parabens inhibit human skin estrogen sulfotransferase activity: possible link to paraben estrogenic effects.
    Prusakiewicz JJ; Harville HM; Zhang Y; Ackermann C; Voorman RL
    Toxicology; 2007 Apr; 232(3):248-56. PubMed ID: 17306434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined activation of methyl paraben by light irradiation and esterase metabolism toward oxidative DNA damage.
    Okamoto Y; Hayashi T; Matsunami S; Ueda K; Kojima N
    Chem Res Toxicol; 2008 Aug; 21(8):1594-9. PubMed ID: 18656963
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reaction of para-hydroxybenzoic acid esters with singlet oxygen in the presence of glutathione produces glutathione conjugates of hydroquinone, potent inducers of oxidative stress.
    Nishizawa C; Takeshita K; Ueda J; Nakanishi I; Suzuki KT; Ozawa T
    Free Radic Res; 2006 Mar; 40(3):233-40. PubMed ID: 16484039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing the active site of trypsin with rose bengal: insights into the photodynamic inactivation of the enzyme.
    Khajehpour M; Troxler T; Vanderkooi JM
    Photochem Photobiol; 2004; 80(2):359-65. PubMed ID: 15244504
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidation of 2'-deoxyguanosine 5'-monophosphate photoinduced by pterin: type I versus type II mechanism.
    Petroselli G; Dántola ML; Cabrerizo FM; Capparelli AL; Lorente C; Oliveros E; Thomas AH
    J Am Chem Soc; 2008 Mar; 130(10):3001-11. PubMed ID: 18278909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Model studies on the photosensitized isomerization of bixin.
    Montenegro MA; Rios Ade O; Mercadante AZ; Nazareno MA; Borsarelli CD
    J Agric Food Chem; 2004 Jan; 52(2):367-73. PubMed ID: 14733523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of dye localization and self-interactions on the photosensitized generation of singlet oxygen by rose bengal bound to bovine serum albumin.
    Turbay MB; Rey V; Argañaraz NM; Morán Vieyra FE; Aspée A; Lissi EA; Borsarelli CD
    J Photochem Photobiol B; 2014 Dec; 141():275-82. PubMed ID: 25463678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quenching mechanisms and kinetics of Trolox and ascorbic acid on the riboflavin-photosensitized oxidation of tryptophan and tyrosine.
    Yettella RR; Min DB
    J Agric Food Chem; 2008 Nov; 56(22):10887-92. PubMed ID: 18975971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.