BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 19337729)

  • 1. Comparative genomics indicates the mammalian CD33rSiglec locus evolved by an ancient large-scale inverse duplication and suggests all Siglecs share a common ancestral region.
    Cao H; de Bono B; Belov K; Wong ES; Trowsdale J; Barrow AD
    Immunogenetics; 2009 May; 61(5):401-17. PubMed ID: 19337729
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolution of CD33-related siglecs: regulating host immune functions and escaping pathogen exploitation?
    Cao H; Crocker PR
    Immunology; 2011 Jan; 132(1):18-26. PubMed ID: 21070233
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large-scale sequencing of the CD33-related Siglec gene cluster in five mammalian species reveals rapid evolution by multiple mechanisms.
    Angata T; Margulies EH; Green ED; Varki A
    Proc Natl Acad Sci U S A; 2004 Sep; 101(36):13251-6. PubMed ID: 15331780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cloning and characterization of a novel mouse Siglec, mSiglec-F: differential evolution of the mouse and human (CD33) Siglec-3-related gene clusters.
    Angata T; Hingorani R; Varki NM; Varki A
    J Biol Chem; 2001 Nov; 276(48):45128-36. PubMed ID: 11579105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cloning, characterization, and phylogenetic analysis of siglec-9, a new member of the CD33-related group of siglecs. Evidence for co-evolution with sialic acid synthesis pathways.
    Angata T; Varki A
    J Biol Chem; 2000 Jul; 275(29):22127-35. PubMed ID: 10801860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cloning and characterization of human Siglec-11. A recently evolved signaling molecule that can interact with SHP-1 and SHP-2 and is expressed by tissue macrophages, including brain microglia.
    Angata T; Kerr SC; Greaves DR; Varki NM; Crocker PR; Varki A
    J Biol Chem; 2002 Jul; 277(27):24466-74. PubMed ID: 11986327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid evolution of binding specificities and expression patterns of inhibitory CD33-related Siglecs in primates.
    Padler-Karavani V; Hurtado-Ziola N; Chang YC; Sonnenburg JL; Ronaghy A; Yu H; Verhagen A; Nizet V; Chen X; Varki N; Varki A; Angata T
    FASEB J; 2014 Mar; 28(3):1280-93. PubMed ID: 24308974
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Siglecs: A journey through the evolution of sialic acid-binding immunoglobulin-type lectins.
    Bornhöfft KF; Goldammer T; Rebl A; Galuska SP
    Dev Comp Immunol; 2018 Sep; 86():219-231. PubMed ID: 29751010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene conversions are frequent but not under positive selection in the Siglec gene families of primates.
    Zid M; Drouin G
    Genome; 2014 Jun; 57(6):317-25. PubMed ID: 25166301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular diversity and evolution of the Siglec family of cell-surface lectins.
    Angata T
    Mol Divers; 2006 Nov; 10(4):555-66. PubMed ID: 16972014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A uniquely human consequence of domain-specific functional adaptation in a sialic acid-binding receptor.
    Sonnenburg JL; Altheide TK; Varki A
    Glycobiology; 2004 Apr; 14(4):339-46. PubMed ID: 14693915
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The membrane-proximal immunoreceptor tyrosine-based inhibitory motif is critical for the inhibitory signaling mediated by Siglecs-7 and -9, CD33-related Siglecs expressed on human monocytes and NK cells.
    Avril T; Floyd H; Lopez F; Vivier E; Crocker PR
    J Immunol; 2004 Dec; 173(11):6841-9. PubMed ID: 15557178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genomic organization of the siglec gene locus on chromosome 19q13.4 and cloning of two new siglec pseudogenes.
    Yousef GM; Ordon MH; Foussias G; Diamandis EP
    Gene; 2002 Mar; 286(2):259-70. PubMed ID: 11943481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Siglecs: sialic-acid-binding immunoglobulin-like lectins in cell-cell interactions and signalling.
    Crocker PR
    Curr Opin Struct Biol; 2002 Oct; 12(5):609-15. PubMed ID: 12464312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Siglecs in innate immunity.
    Crocker PR
    Curr Opin Pharmacol; 2005 Aug; 5(4):431-7. PubMed ID: 15955740
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New I-type lectins of the CD 33-related siglec subgroup identified through genomics.
    Crocker PR; Zhang J
    Biochem Soc Symp; 2002; (69):83-94. PubMed ID: 12655776
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Siglecs, sialic acids and innate immunity.
    Crocker PR; Varki A
    Trends Immunol; 2001 Jun; 22(6):337-42. PubMed ID: 11377294
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Myeloid precursors and acute myeloid leukemia cells express multiple CD33-related Siglecs.
    Nguyen DH; Ball ED; Varki A
    Exp Hematol; 2006 Jun; 34(6):728-35. PubMed ID: 16728277
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative analysis of the paired immunoglobulin-like receptor (PILR) locus in six mammalian genomes: duplication, conversion, and the birth of new genes.
    Wilson MD; Cheung J; Martindale DW; Scherer SW; Koop BF
    Physiol Genomics; 2006 Nov; 27(3):201-18. PubMed ID: 16926269
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discovery, classification, evolution and diversity of Siglecs.
    Angata T; Varki A
    Mol Aspects Med; 2023 Apr; 90():101117. PubMed ID: 35989204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.