BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

454 related articles for article (PubMed ID: 19337920)

  • 21. Removal of Cr(VI) by nanoscale zero-valent iron (nZVI) from soil contaminated with tannery wastes.
    Singh R; Misra V; Singh RP
    Bull Environ Contam Toxicol; 2012 Feb; 88(2):210-4. PubMed ID: 21996721
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Remediation of hexavalent chromium contaminated soil by biochar-supported zero-valent iron nanoparticles.
    Su H; Fang Z; Tsang PE; Zheng L; Cheng W; Fang J; Zhao D
    J Hazard Mater; 2016 Nov; 318():533-540. PubMed ID: 27469041
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Degradation of lindane contaminated soil using zero-valent iron nanoparticles.
    Singh R; Singh A; Misra V; Singh RP
    J Biomed Nanotechnol; 2011 Feb; 7(1):175-6. PubMed ID: 21485858
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Simultaneous stabilization of Pb and improvement of soil strength using nZVI.
    Zhou WH; Liu F; Yi S; Chen YZ; Geng X; Zheng C
    Sci Total Environ; 2019 Feb; 651(Pt 1):877-884. PubMed ID: 30257228
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nanoscale zero-valent iron application for in situ reduction of hexavalent chromium and its effects on indigenous microorganism populations.
    Němeček J; Lhotský O; Cajthaml T
    Sci Total Environ; 2014 Jul; 485-486():739-747. PubMed ID: 24369106
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Assessment of combined electro-nanoremediation of molinate contaminated soil.
    Gomes HI; Fan G; Mateus EP; Dias-Ferreira C; Ribeiro AB
    Sci Total Environ; 2014 Sep; 493():178-84. PubMed ID: 24946031
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Stabilisation of nanoscale zero-valent iron with biochar for enhanced transport and in-situ remediation of hexavalent chromium in soil.
    Su H; Fang Z; Tsang PE; Fang J; Zhao D
    Environ Pollut; 2016 Jul; 214():94-100. PubMed ID: 27064615
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Measuring the reactivity of commercially available zero-valent iron nanoparticles used for environmental remediation with iopromide.
    Schmid D; Micić V; Laumann S; Hofmann T
    J Contam Hydrol; 2015 Oct; 181():36-45. PubMed ID: 25708601
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of co-application of nano-zero valent iron and biochar on the total and freely dissolved polycyclic aromatic hydrocarbons removal and toxicity of contaminated soils.
    Oleszczuk P; Kołtowski M
    Chemosphere; 2017 Feb; 168():1467-1476. PubMed ID: 27916262
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Surfactant-enhanced PEG-4000-NZVI for remediating trichloroethylene-contaminated soil.
    Tian H; Liang Y; Zhu T; Zeng X; Sun Y
    Chemosphere; 2018 Mar; 195():585-593. PubMed ID: 29287269
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The application of illite supported nanoscale zero valent iron for the treatment of uranium contaminated groundwater.
    Jing C; Landsberger S; Li YL
    J Environ Radioact; 2017 Sep; 175-176():1-6. PubMed ID: 28407570
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transport characteristics of nanoscale zero-valent iron carried by three different "vehicles" in porous media.
    Su Y; Zhao YS; Li LL; Qin CY; Wu F; Geng NN; Lei JS
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(14):1639-52. PubMed ID: 25320851
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of nano-sized zero-valent iron (nZVI) on DDT degradation in soil and its toxicity to collembola and ostracods.
    El-Temsah YS; Joner EJ
    Chemosphere; 2013 Jun; 92(1):131-7. PubMed ID: 23522781
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nano zerovalent Fe did not reduce metal(loid) leaching and ecotoxicity further than conventional Fe grit in contrasting smelter impacted soils: A 1-year field study.
    Lewandowská Š; Vaňková Z; Beesley L; Cajthaml T; Wickramasinghe N; Vojar J; Vítková M; Tsang DCW; Ndungu K; Komárek M
    Sci Total Environ; 2024 Jun; 927():171892. PubMed ID: 38531450
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electroremediation of PCB contaminated soil combined with iron nanoparticles: Effect of the soil type.
    Gomes HI; Dias-Ferreira C; Ottosen LM; Ribeiro AB
    Chemosphere; 2015 Jul; 131():157-63. PubMed ID: 25841071
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Use of Nanoscale Zero-Valent Iron for Remediation of Clayey Soil Contaminated with Hexavalent Chromium: Batch and Column Tests.
    Reginatto C; Cecchin I; Heineck KS; Reddy KR; Thomé A
    Int J Environ Res Public Health; 2020 Feb; 17(3):. PubMed ID: 32033384
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Immobilization and phytotoxicity of chromium in contaminated soil remediated by CMC-stabilized nZVI.
    Wang Y; Fang Z; Kang Y; Tsang EP
    J Hazard Mater; 2014 Jun; 275():230-7. PubMed ID: 24880637
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Immobilization of cadmium in contaminated soils using sulfidated nanoscale zero-valent iron: Effectiveness and remediation mechanism.
    Guo Y; Li X; Liang L; Lin Z; Su X; Zhang W
    J Hazard Mater; 2021 Oct; 420():126605. PubMed ID: 34329110
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhanced reductive dechlorination of trichloroethylene by sulfidated nanoscale zerovalent iron.
    Rajajayavel SR; Ghoshal S
    Water Res; 2015 Jul; 78():144-53. PubMed ID: 25935369
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Are contaminated soil and groundwater remediation with nanoscale zero-valent iron sustainable? An analysis of case studies.
    Visentin C; Braun AB; Reginatto C; Cecchin I; Vanzetto GV; Thomé A
    Environ Pollut; 2024 Jul; 352():124167. PubMed ID: 38754689
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.