BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 19338284)

  • 1. Tuning gold nanoparticle-poly(2-hydroxyethyl methacrylate) brush interactions: from reversible swelling to capture and release.
    Diamanti S; Arifuzzaman S; Genzer J; Vaia RA
    ACS Nano; 2009 Apr; 3(4):807-18. PubMed ID: 19338284
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct patterning of intrinsically electron beam sensitive polymer brushes.
    Rastogi A; Paik MY; Tanaka M; Ober CK
    ACS Nano; 2010 Feb; 4(2):771-80. PubMed ID: 20121228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption of molecular brushes with polyelectrolyte backbones onto oppositely charged surfaces: a self-consistent field theory.
    Feuz L; Leermakers FA; Textor M; Borisov O
    Langmuir; 2008 Jul; 24(14):7232-44. PubMed ID: 18558731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gold nanoparticle/polymer nanocomposites: dispersion of nanoparticles as a function of capping agent molecular weight and grafting density.
    Corbierre MK; Cameron NS; Sutton M; Laaziri K; Lennox RB
    Langmuir; 2005 Jun; 21(13):6063-72. PubMed ID: 15952861
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacterial adhesion on hybrid cationic nanoparticle-polymer brush surfaces: ionic strength tunes capture from monovalent to multivalent binding.
    Fang B; Gon S; Park M; Kumar KN; Rotello VM; Nusslein K; Santore MM
    Colloids Surf B Biointerfaces; 2011 Oct; 87(1):109-15. PubMed ID: 21640564
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amphiphilic Janus gold nanoparticles via combining "solid-state grafting-to" and "grafting-from" methods.
    Wang B; Li B; Zhao B; Li CY
    J Am Chem Soc; 2008 Sep; 130(35):11594-5. PubMed ID: 18693735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of polymeric micelles from brush polymer with poly(epsilon-caprolactone)-b-poly(ethylene glycol) side chains as drug carrier.
    Du JZ; Tang LY; Song WJ; Shi Y; Wang J
    Biomacromolecules; 2009 Aug; 10(8):2169-74. PubMed ID: 19722555
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of blood plasma with antifouling surfaces.
    Rodriguez Emmenegger C; Brynda E; Riedel T; Sedlakova Z; Houska M; Alles AB
    Langmuir; 2009 Jun; 25(11):6328-33. PubMed ID: 19408903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitivity of protein adsorption to architectural variations in a protein-resistant polymer brush containing engineered nanoscale adhesive sites.
    Gon S; Santore MM
    Langmuir; 2011 Dec; 27(24):15083-91. PubMed ID: 22040182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption properties of poly(l-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG) at a hydrophobic interface: influence of tribological stress, pH, salt concentration, and polymer molecular weight.
    Lee S; Spencer ND
    Langmuir; 2008 Sep; 24(17):9479-88. PubMed ID: 18652428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface chemical studies on the competitive adsorption of poly(ethylene glycol) and ammonium poly(methacrylate) onto alumina.
    Saravanan L; Subramanian S
    J Colloid Interface Sci; 2005 Apr; 284(2):363-77. PubMed ID: 15780271
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoparticle Adsorption on Antifouling Polymer Brushes.
    Zeuthen CM; Shahrokhtash A; Sutherland DS
    Langmuir; 2019 Nov; 35(46):14879-14889. PubMed ID: 31635462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermoresponsive PDMAEMA Brushes: Effect of Gold Nanoparticle Deposition.
    Yenice Z; Schön S; Bildirir H; Genzer J; von Klitzing R
    J Phys Chem B; 2015 Aug; 119(32):10348-58. PubMed ID: 26132296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tunable assembly of gold nanoparticles on nanopatterned poly(ethylene glycol) brushes.
    Onses MS; Nealey PF
    Small; 2013 Dec; 9(24):4168-74. PubMed ID: 23839929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Poly(2-hydroxyethyl methacrylate) brush surface for specific and oriented adsorption of glycosidases.
    Fang Y; Xu W; Meng XL; Ye XY; Wu J; Xu ZK
    Langmuir; 2012 Sep; 28(37):13318-24. PubMed ID: 22921196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Manipulating protein adsorption using a patchy protein-resistant brush.
    Gon S; Bendersky M; Ross JL; Santore MM
    Langmuir; 2010 Jul; 26(14):12147-54. PubMed ID: 20557060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Active protein-functionalized poly(poly(ethylene glycol) monomethacrylate)-Si(100) hybrids from surface-initiated atom transfer radical polymerization for potential biological applications.
    Xu FJ; Liu LY; Yang WT; Kang ET; Neoh KG
    Biomacromolecules; 2009 Jun; 10(6):1665-74. PubMed ID: 19402738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of surface-grafted polymeric amphiphilic coatings comprising ethylene glycol and fluorinated groups and their response to protein adsorption.
    Arifuzzaman S; Ozçam AE; Efimenko K; Fischer DA; Genzer J
    Biointerphases; 2009 Jun; 4(2):FA33-44. PubMed ID: 20408715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stability and nonfouling properties of poly(poly(ethylene glycol) methacrylate) brushes under cell culture conditions.
    Tugulu S; Klok HA
    Biomacromolecules; 2008 Mar; 9(3):906-12. PubMed ID: 18260637
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tunable polymer brush/Au NPs hybrid plasmonic arrays based on host-guest interaction.
    Fang L; Li Y; Chen Z; Liu W; Zhang J; Xiang S; Shen H; Li Z; Yang B
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):19951-7. PubMed ID: 25347749
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.