BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 19338435)

  • 1. Surface-phosphorylated copolymer promotes direct bone bonding.
    Gopalakrishnanchettiyar SS; Mohanty M; Kumary TV; Valappil MP; Parameshwaran R; Varma HK
    Tissue Eng Part A; 2009 Oct; 15(10):3061-9. PubMed ID: 19338435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peptide surface modification of P(HEMA-co-MMA)-b-PIB-b-P(HEMA-co-MMA) block copolymers.
    Ojha U; Feng D; Chandekar A; Whitten JE; Faust R
    Langmuir; 2009 Jun; 25(11):6319-27. PubMed ID: 19334689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gelatin-based microcarriers as embryonic stem cell delivery system in bone tissue engineering: an in-vitro study.
    Tielens S; Declercq H; Gorski T; Lippens E; Schacht E; Cornelissen M
    Biomacromolecules; 2007 Mar; 8(3):825-32. PubMed ID: 17266367
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Block copolymer of polyphosphoester and poly(L-lactic acid) modified surface for enhancing osteoblast adhesion, proliferation, and function.
    Yang XZ; Sun TM; Dou S; Wu J; Wang YC; Wang J
    Biomacromolecules; 2009 Aug; 10(8):2213-20. PubMed ID: 19586040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthetic poly(amino acid) hydrogels with incorporated cell-adhesion peptides for tissue engineering.
    Studenovská H; Vodicka P; Proks V; Hlucilová J; Motlík J; Rypácek F
    J Tissue Eng Regen Med; 2010 Aug; 4(6):454-63. PubMed ID: 20084624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Early bone in-growth ability of alumina ceramic implants loaded with tissue-engineered bone.
    Tohma Y; Tanaka Y; Ohgushi H; Kawate K; Taniguchi A; Hayashi K; Isomoto S; Takakura Y
    J Orthop Res; 2006 Apr; 24(4):595-603. PubMed ID: 16514632
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cholesterol-modified superporous poly(2-hydroxyethyl methacrylate) scaffolds for tissue engineering.
    Kubinová S; Horák D; Syková E
    Biomaterials; 2009 Sep; 30(27):4601-9. PubMed ID: 19500833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hierarchically Porous Osteoinductive Poly(hydroxyethyl methacrylate-
    Sreeja S; Parameshwar R; Varma PRH; Sailaja GS
    ACS Biomater Sci Eng; 2021 Feb; 7(2):701-717. PubMed ID: 33395260
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Osteogenic differentiation of human bone marrow mesenchymal stem cells seeded on melt based chitosan scaffolds for bone tissue engineering applications.
    Costa-Pinto AR; Correlo VM; Sol PC; Bhattacharya M; Charbord P; Delorme B; Reis RL; Neves NM
    Biomacromolecules; 2009 Aug; 10(8):2067-73. PubMed ID: 19621927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of mouse VEGF164 on the viability of hydroxyethyl methacrylate-methyl methacrylate-microencapsulated cells in vivo: bioluminescence imaging.
    Cheng D; Lo C; Sefton MV
    J Biomed Mater Res A; 2008 Nov; 87(2):321-31. PubMed ID: 18181105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular recognition at methyl methacrylate/n-butyl acrylate (MMA/nBA) monomer unit boundaries of phospholipids at p-MMA/nBA copolymer surfaces.
    Yu M; Urban MW; Sheng Y; Leszczynski J
    Langmuir; 2008 Sep; 24(18):10382-9. PubMed ID: 18693704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Future design of a new keratoprosthesis. Physical and biological analysis of polymeric substrates for epithelial cell growth.
    Campillo-Fernandez AJ; Pastor S; Abad-Collado M; Bataille L; Gomez-Ribelles JL; Meseguer-Dueñas JM; Monleon-Pradas M; Artola A; Alio JL; Ruiz-Moreno JM
    Biomacromolecules; 2007 Aug; 8(8):2429-36. PubMed ID: 17595132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Osteocalcin enhances bone remodeling around hydroxyapatite/collagen composites.
    Rammelt S; Neumann M; Hanisch U; Reinstorf A; Pompe W; Zwipp H; Biewener A
    J Biomed Mater Res A; 2005 Jun; 73(3):284-94. PubMed ID: 15800855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Viability of murine 3T3 fibroblasts on the poly(methyl methacrylate) surface modified by constant UV irradiation].
    Chaberska H; Kaczmarek H; Bazylak G
    Polim Med; 2007; 37(3):13-9. PubMed ID: 18251201
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osteoblast functions on functionalized PMMA-based polymers exhibiting Staphylococcus aureus adhesion inhibition.
    Anagnostou F; Debet A; Pavon-Djavid G; Goudaby Z; Hélary G; Migonney V
    Biomaterials; 2006 Jul; 27(21):3912-9. PubMed ID: 16564569
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and characterization of tapered copolymer brushes via surface-initiated atom transfer radical copolymerization.
    Xu C; Wu T; Mei Y; Drain CM; Batteas JD; Beers KL
    Langmuir; 2005 Nov; 21(24):11136-40. PubMed ID: 16285782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New 3-D microarray platform based on macroporous polymer monoliths.
    Rober M; Walter J; Vlakh E; Stahl F; Kasper C; Tennikova T
    Anal Chim Acta; 2009 Jun; 644(1-2):95-103. PubMed ID: 19463569
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A poly-HEMA based aqueous humor draining device.
    Chiang CT; Liou FJ; Niu GC; Fu YA; Wang YJ
    J Appl Biomater; 1990; 1(4):321-27. PubMed ID: 10171100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental implantation of hydrogel into the bone.
    Korbelár P; Vacík J; Dylevský I
    J Biomed Mater Res; 1988 Sep; 22(9):751-62. PubMed ID: 3220843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. N-acetyl cysteine (NAC)-mediated detoxification and functionalization of poly(methyl methacrylate) bone cement.
    Tsukimura N; Yamada M; Aita H; Hori N; Yoshino F; Chang-Il Lee M; Kimoto K; Jewett A; Ogawa T
    Biomaterials; 2009 Jul; 30(20):3378-89. PubMed ID: 19303139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.