These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
239 related articles for article (PubMed ID: 19339281)
81. Polycystin-1 regulates skeletogenesis through stimulation of the osteoblast-specific transcription factor RUNX2-II. Xiao Z; Zhang S; Magenheimer BS; Luo J; Quarles LD J Biol Chem; 2008 May; 283(18):12624-34. PubMed ID: 18321855 [TBL] [Abstract][Full Text] [Related]
82. The osteogenic transcription factor Runx2 regulates components of the fibroblast growth factor/proteoglycan signaling axis in osteoblasts. Teplyuk NM; Haupt LM; Ling L; Dombrowski C; Mun FK; Nathan SS; Lian JB; Stein JL; Stein GS; Cool SM; van Wijnen AJ J Cell Biochem; 2009 May; 107(1):144-54. PubMed ID: 19259985 [TBL] [Abstract][Full Text] [Related]
83. Connexin 43 Affects Osteogenic Differentiation of the Posterior Longitudinal Ligament Cells via Regulation of ERK Activity by Stabilizing Runx2 in Ossification. Yang H; Shi L; Shi G; Guo Y; Chen D; Chen D; Shi J Cell Physiol Biochem; 2016; 38(1):237-47. PubMed ID: 26784020 [TBL] [Abstract][Full Text] [Related]
85. Cbl-b enhances Runx2 protein stability and augments osteocalcin promoter activity in osteoblastic cell lines. Salingcarnboriboon RA; Pavasant P; Noda M J Cell Physiol; 2010 Sep; 224(3):743-7. PubMed ID: 20578243 [TBL] [Abstract][Full Text] [Related]
86. Histone deacetylase 7 associates with Runx2 and represses its activity during osteoblast maturation in a deacetylation-independent manner. Jensen ED; Schroeder TM; Bailey J; Gopalakrishnan R; Westendorf JJ J Bone Miner Res; 2008 Mar; 23(3):361-72. PubMed ID: 17997710 [TBL] [Abstract][Full Text] [Related]
87. Ascorbic acid-dependent activation of the osteocalcin promoter in MC3T3-E1 preosteoblasts: requirement for collagen matrix synthesis and the presence of an intact OSE2 sequence. Xiao G; Cui Y; Ducy P; Karsenty G; Franceschi RT Mol Endocrinol; 1997 Jul; 11(8):1103-13. PubMed ID: 9212058 [TBL] [Abstract][Full Text] [Related]
88. MAML1 enhances the transcriptional activity of Runx2 and plays a role in bone development. Watanabe T; Oyama T; Asada M; Harada D; Ito Y; Inagawa M; Suzuki Y; Sugano S; Katsube K; Karsenty G; Komori T; Kitagawa M; Asahara H PLoS Genet; 2013; 9(1):e1003132. PubMed ID: 23326237 [TBL] [Abstract][Full Text] [Related]
90. Cx43- and Smad-Mediated TGF-β/ BMP Signaling Pathway Promotes Cartilage Differentiation of Bone Marrow Mesenchymal Stem Cells and Inhibits Osteoblast Differentiation. Zhang YD; Zhao SC; Zhu ZS; Wang YF; Liu JX; Zhang ZC; Xue F Cell Physiol Biochem; 2017; 42(4):1277-1293. PubMed ID: 28697500 [TBL] [Abstract][Full Text] [Related]
91. Characterization of hTERT-immortalized osteoblast cell lines generated from wild-type and connexin43-null mouse calvaria. Thi MM; Urban-Maldonado M; Spray DC; Suadicani SO Am J Physiol Cell Physiol; 2010 Nov; 299(5):C994-C1006. PubMed ID: 20686067 [TBL] [Abstract][Full Text] [Related]
92. TC-PTP directly interacts with connexin43 to regulate gap junction intercellular communication. Li H; Spagnol G; Naslavsky N; Caplan S; Sorgen PL J Cell Sci; 2014 Aug; 127(Pt 15):3269-79. PubMed ID: 24849651 [TBL] [Abstract][Full Text] [Related]
93. The vitamin D receptor, Runx2, and the Notch signaling pathway cooperate in the transcriptional regulation of osteopontin. Shen Q; Christakos S J Biol Chem; 2005 Dec; 280(49):40589-98. PubMed ID: 16195230 [TBL] [Abstract][Full Text] [Related]
94. Fibroblast growth factor-2 induces osteogenic differentiation through a Runx2 activation in vascular smooth muscle cells. Nakahara T; Sato H; Shimizu T; Tanaka T; Matsui H; Kawai-Kowase K; Sato M; Iso T; Arai M; Kurabayashi M Biochem Biophys Res Commun; 2010 Apr; 394(2):243-8. PubMed ID: 19903460 [TBL] [Abstract][Full Text] [Related]
95. BMP signaling is required for RUNX2-dependent induction of the osteoblast phenotype. Phimphilai M; Zhao Z; Boules H; Roca H; Franceschi RT J Bone Miner Res; 2006 Apr; 21(4):637-46. PubMed ID: 16598384 [TBL] [Abstract][Full Text] [Related]
97. Connexin 43 affects thoracic ossification of ligamentum flavum by regulating the p38 MAPK-RUNX2 signaling pathway. Chen Q; Wang JH; Wang Y; Zhang QY; Feng JF; Jiang K; Wang XK; Xiang C; Li YL Tissue Cell; 2022 Jun; 76():101760. PubMed ID: 35220127 [TBL] [Abstract][Full Text] [Related]
98. Tumor necrosis factor-α enhances the transcription of Smad ubiquitination regulatory factor 1 in an activating protein-1- and Runx2-dependent manner. Lee HL; Yi T; Baek K; Kwon A; Hwang HR; Qadir AS; Park HJ; Woo KM; Ryoo HM; Kim GS; Baek JH J Cell Physiol; 2013 May; 228(5):1076-86. PubMed ID: 23042144 [TBL] [Abstract][Full Text] [Related]
99. Dlx5 specifically regulates Runx2 type II expression by binding to homeodomain-response elements in the Runx2 distal promoter. Lee MH; Kim YJ; Yoon WJ; Kim JI; Kim BG; Hwang YS; Wozney JM; Chi XZ; Bae SC; Choi KY; Cho JY; Choi JY; Ryoo HM J Biol Chem; 2005 Oct; 280(42):35579-87. PubMed ID: 16115867 [TBL] [Abstract][Full Text] [Related]
100. Prostaglandin E₂ maintains mouse ESC undifferentiated state through regulation of connexin31, connexin43 and connexin45 expression: involvement of glycogen synthase kinase 3β/β-catenin. Yun SP; Ryu JM; Park JH; Kim MO; Lee JH; Han HJ Biol Cell; 2012 Jul; 104(7):378-96. PubMed ID: 22420773 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]