These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 19339664)
1. Cloning, expression, and biochemical properties of CPOX4, a genetic variant of coproporphyrinogen oxidase that affects susceptibility to mercury toxicity in humans. Li T; Woods JS Toxicol Sci; 2009 Jun; 109(2):228-36. PubMed ID: 19339664 [TBL] [Abstract][Full Text] [Related]
2. A cascade analysis of the interaction of mercury and coproporphyrinogen oxidase (CPOX) polymorphism on the heme biosynthetic pathway and porphyrin production. Heyer NJ; Bittner AC; Echeverria D; Woods JS Toxicol Lett; 2006 Feb; 161(2):159-66. PubMed ID: 16214298 [TBL] [Abstract][Full Text] [Related]
3. Modification of neurobehavioral effects of mercury by a genetic polymorphism of coproporphyrinogen oxidase in children. Woods JS; Heyer NJ; Echeverria D; Russo JE; Martin MD; Bernardo MF; Luis HS; Vaz L; Farin FM Neurotoxicol Teratol; 2012; 34(5):513-21. PubMed ID: 22765978 [TBL] [Abstract][Full Text] [Related]
4. Oxidation of protoporphyrinogen IX in Escherichia coli is mediated by the aerobic coproporphyrinogen oxidase. Narita S; Taketani S; Inokuchi H Mol Gen Genet; 1999 Jul; 261(6):1012-20. PubMed ID: 10485293 [TBL] [Abstract][Full Text] [Related]
5. The oxygen-independent coproporphyrinogen III oxidase HemN utilizes harderoporphyrinogen as a reaction intermediate during conversion of coproporphyrinogen III to protoporphyrinogen IX. Rand K; Noll C; Schiebel HM; Kemken D; Dülcks T; Kalesse M; Heinz DW; Layer G Biol Chem; 2010 Jan; 391(1):55-63. PubMed ID: 19919179 [TBL] [Abstract][Full Text] [Related]
6. Factors determining the sequence of oxidative decarboxylation of the 2- and 4-propionate substituents of coproporphyrinogen III by coproporphyrinogen oxidase in rat liver. Elder GH; Evans JO; Jackson JR; Jackson AH Biochem J; 1978 Jan; 169(1):215-23. PubMed ID: 629747 [TBL] [Abstract][Full Text] [Related]
7. The association between a genetic polymorphism of coproporphyrinogen oxidase, dental mercury exposure and neurobehavioral response in humans. Echeverria D; Woods JS; Heyer NJ; Rohlman D; Farin FM; Li T; Garabedian CE Neurotoxicol Teratol; 2006; 28(1):39-48. PubMed ID: 16343843 [TBL] [Abstract][Full Text] [Related]
8. Role of aspartate 400, arginine 262, and arginine 401 in the catalytic mechanism of human coproporphyrinogen oxidase. Stephenson JR; Stacey JA; Morgenthaler JB; Friesen JA; Lash TD; Jones MA Protein Sci; 2007 Mar; 16(3):401-10. PubMed ID: 17242372 [TBL] [Abstract][Full Text] [Related]
9. The association between genetic polymorphisms of coproporphyrinogen oxidase and an atypical porphyrinogenic response to mercury exposure in humans. Woods JS; Echeverria D; Heyer NJ; Simmonds PL; Wilkerson J; Farin FM Toxicol Appl Pharmacol; 2005 Aug; 206(2):113-20. PubMed ID: 15967199 [TBL] [Abstract][Full Text] [Related]
10. Purification and properties of coproporphyrinogen III oxidase from bovine liver. Yoshinaga T Methods Enzymol; 1997; 281():355-67. PubMed ID: 9251001 [No Abstract] [Full Text] [Related]
11. Expression of coproporphyrinogen oxidase and synthesis of hemoglobin in human erythroleukemia K562 cells. Taketani S; Furukawa T; Furuyama K Eur J Biochem; 2001 Mar; 268(6):1705-11. PubMed ID: 11248690 [TBL] [Abstract][Full Text] [Related]
13. Key M; Baptista CG; Bergmann A; Floyd K; Blader IJ; Dou Z mSphere; 2024 Mar; 9(3):e0009224. PubMed ID: 38411121 [No Abstract] [Full Text] [Related]
14. Cloning and characterization of the Escherichia coli hemN gene encoding the oxygen-independent coproporphyrinogen III oxidase. Troup B; Hungerer C; Jahn D J Bacteriol; 1995 Jun; 177(11):3326-31. PubMed ID: 7768836 [TBL] [Abstract][Full Text] [Related]
15. Kinetic studies of novel di- and tri-propionate substrates for the chicken red blood cell enzyme coproporphyrinogen oxidase. Jones MA; He J; Lash TD J Biochem; 2002 Feb; 131(2):201-5. PubMed ID: 11820932 [TBL] [Abstract][Full Text] [Related]
16. Cystathionine-γ-lyase (CSE) deficiency increases erythropoiesis and promotes mitochondrial electron transport via the upregulation of coproporphyrinogen III oxidase and consequent stimulation of heme biosynthesis. Módis K; Ramanujam VS; Govar AA; Lopez E; Anderson KE; Wang R; Szabo C Biochem Pharmacol; 2019 Nov; 169():113604. PubMed ID: 31421132 [TBL] [Abstract][Full Text] [Related]
17. Normal and abnormal heme biosynthesis. Part 7. Synthesis and metabolism of coproporphyrinogen-III analogues with acetate or butyrate side chains on rings C and D. Development of a modified model for the active site of coproporphyrinogen oxidase. Lash TD; Lamm TR; Schaber JA; Chung WH; Johnson EK; Jones MA Bioorg Med Chem; 2011 Feb; 19(4):1492-504. PubMed ID: 21277781 [TBL] [Abstract][Full Text] [Related]
18. Comment on: "A cascade analysis of the interaction of mercury and coproporphyrinogen oxidase (CPOX) polymorphism on the heme biosynthetic pathway and porphyrin production" by Heyer et al. [Toxicol. Lett. 161 (2006) 159-166]. Björkman L; Vahter M Toxicol Lett; 2007 Feb; 169(1):91-2; author reply 93-4. PubMed ID: 17215094 [No Abstract] [Full Text] [Related]
19. The cyanobacterial protoporphyrinogen oxidase HemJ is a new Skotnicová P; Sobotka R; Shepherd M; Hájek J; Hrouzek P; Tichý M J Biol Chem; 2018 Aug; 293(32):12394-12404. PubMed ID: 29925590 [TBL] [Abstract][Full Text] [Related]
20. The enzyme engineering of mutant homodimer and heterodimer of coproporphyinogen oxidase contributes to new insight into hereditary coproporphyria and harderoporphyria. Kim DH; Hino R; Adachi Y; Kobori A; Taketani S J Biochem; 2013 Dec; 154(6):551-9. PubMed ID: 24078084 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]