These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 19339676)
1. Salt-resistant blood pressure and salt-sensitive renal autoregulation in chronic streptozotocin diabetes. Lau C; Sudbury I; Thomson M; Howard PL; Magil AB; Cupples WA Am J Physiol Regul Integr Comp Physiol; 2009 Jun; 296(6):R1761-70. PubMed ID: 19339676 [TBL] [Abstract][Full Text] [Related]
2. Increased susceptibility to hypertensive renal disease in streptozotocin-treated diabetic rats is not modulated by salt intake. Sima CA; Koeners MP; Joles JA; Braam B; Magil AB; Cupples WA Diabetologia; 2012 Aug; 55(8):2246-55. PubMed ID: 22562180 [TBL] [Abstract][Full Text] [Related]
3. Effects of SGLT2 inhibitor and dietary NaCl on glomerular hemodynamics assessed by micropuncture in diabetic rats. Thomson SC; Vallon V Am J Physiol Renal Physiol; 2021 May; 320(5):F761-F771. PubMed ID: 33645318 [TBL] [Abstract][Full Text] [Related]
4. Characterization of the development of renal injury in Type-1 diabetic Dahl salt-sensitive rats. Slaughter TN; Paige A; Spires D; Kojima N; Kyle PB; Garrett MR; Roman RJ; Williams JM Am J Physiol Regul Integr Comp Physiol; 2013 Oct; 305(7):R727-34. PubMed ID: 23926133 [TBL] [Abstract][Full Text] [Related]
5. Adenosine A(1) receptors determine glomerular hyperfiltration and the salt paradox in early streptozotocin diabetes mellitus. Vallon V; Schroth J; Satriano J; Blantz RC; Thomson SC; Rieg T Nephron Physiol; 2009; 111(3):p30-8. PubMed ID: 19276628 [TBL] [Abstract][Full Text] [Related]
6. Insulin induces the correlation between renal blood flow and glomerular filtration rate in diabetes: implications for mechanisms causing hyperfiltration. Pihl L; Persson P; Fasching A; Hansell P; DiBona GF; Palm F Am J Physiol Regul Integr Comp Physiol; 2012 Jul; 303(1):R39-47. PubMed ID: 22461175 [TBL] [Abstract][Full Text] [Related]
7. Effect of chronic salt loading on kidney function in early and established diabetes mellitus in rats. Vallon V; Kirschenmann D; Wead LM; Lortie MJ; Satriano J; Blantz RC; Thomson SC J Lab Clin Med; 1997 Jul; 130(1):76-82. PubMed ID: 9242369 [TBL] [Abstract][Full Text] [Related]
8. Renal autoregulation in health and disease. Carlström M; Wilcox CS; Arendshorst WJ Physiol Rev; 2015 Apr; 95(2):405-511. PubMed ID: 25834230 [TBL] [Abstract][Full Text] [Related]
9. Abnormal renal structural alterations during the development of diabetes mellitus in Otsuka Long-Evans Tokushima Fatty rats. Koike T; Tomoda F; Kinuno H; Inoue H; Takata M Acta Physiol Scand; 2005 May; 184(1):73-81. PubMed ID: 15847646 [TBL] [Abstract][Full Text] [Related]
11. Salt restriction reduces hyperfiltration, renal enlargement, and albuminuria in experimental diabetes. Allen TJ; Waldron MJ; Casley D; Jerums G; Cooper ME Diabetes; 1997 Jan; 46(1):19-24. PubMed ID: 8971091 [TBL] [Abstract][Full Text] [Related]
12. Renal autoregulation and passive pressure-flow relationships in diabetes and hypertension. Hill JV; Findon G; Appelhoff RJ; Endre ZH Am J Physiol Renal Physiol; 2010 Oct; 299(4):F837-44. PubMed ID: 20660017 [TBL] [Abstract][Full Text] [Related]
13. Continuously measured renal blood flow does not increase in diabetes if nitric oxide synthesis is blocked. Bell TD; DiBona GF; Biemiller R; Brands MW Am J Physiol Renal Physiol; 2008 Nov; 295(5):F1449-56. PubMed ID: 18753304 [TBL] [Abstract][Full Text] [Related]
14. Mechanisms for renal blood flow control early in diabetes as revealed by chronic flow measurement and transfer function analysis. Bell TD; DiBona GF; Wang Y; Brands MW J Am Soc Nephrol; 2006 Aug; 17(8):2184-92. PubMed ID: 16807404 [TBL] [Abstract][Full Text] [Related]
15. Impaired pressure natriuresis and non-dipping blood pressure in rats with early type 1 diabetes mellitus. Culshaw GJ; Costello HM; Binnie D; Stewart KR; Czopek A; Dhaun N; Hadoke PWF; Webb DJ; Bailey MA J Physiol; 2019 Feb; 597(3):767-780. PubMed ID: 30537108 [TBL] [Abstract][Full Text] [Related]
16. Lack of blood pressure salt-sensitivity supports a preglomerular site of action of nitric oxide in Type I diabetic rats. Brands MW; Bell TD; Fleming C; Labazi H; Sturgis LC Clin Exp Pharmacol Physiol; 2007; 34(5-6):475-9. PubMed ID: 17439418 [TBL] [Abstract][Full Text] [Related]
18. Role of nitric oxide in renal function in rats with short and prolonged periods of streptozotocin-induced diabetes. Suanarunsawat T; Klongpanichapak S; Chaiyabutr N Diabetes Obes Metab; 1999 Nov; 1(6):339-46. PubMed ID: 11225650 [TBL] [Abstract][Full Text] [Related]
19. Impaired renal hemodynamics and glomerular hyperfiltration contribute to hypertension-induced renal injury. Fan L; Gao W; Nguyen BV; Jefferson JR; Liu Y; Fan F; Roman RJ Am J Physiol Renal Physiol; 2020 Oct; 319(4):F624-F635. PubMed ID: 32830539 [TBL] [Abstract][Full Text] [Related]
20. Angiotensin II contributes to glomerular hyperfiltration in diabetic rats independently of adenosine type I receptors. Patinha D; Fasching A; Pinho D; Albino-Teixeira A; Morato M; Palm F Am J Physiol Renal Physiol; 2013 Mar; 304(5):F614-22. PubMed ID: 23283998 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]