These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 19339702)

  • 1. Outcomes measurement in voice disorders: application of an acoustic index of dysphonia severity.
    Awan SN; Roy N
    J Speech Lang Hear Res; 2009 Apr; 52(2):482-99. PubMed ID: 19339702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimating dysphonia severity in continuous speech: application of a multi-parameter spectral/cepstral model.
    Awan SN; Roy N; Dromey C
    Clin Linguist Phon; 2009 Nov; 23(11):825-41. PubMed ID: 19891523
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward the development of an objective index of dysphonia severity: a four-factor acoustic model.
    Awan SN; Roy N
    Clin Linguist Phon; 2006; 20(1):35-49. PubMed ID: 16393797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward validation of the cepstral spectral index of dysphonia (CSID) as an objective treatment outcomes measure.
    Peterson EA; Roy N; Awan SN; Merrill RM; Banks R; Tanner K
    J Voice; 2013 Jul; 27(4):401-10. PubMed ID: 23809565
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonlinear dynamic analysis of disordered voice: the relationship between the correlation dimension (D2) and pre-/post-treatment change in perceived dysphonia severity.
    Awan SN; Roy N; Jiang JJ
    J Voice; 2010 May; 24(3):285-93. PubMed ID: 19502002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tracking voice change after thyroidectomy: application of spectral/cepstral analyses.
    Awan SN; Helou LB; Stojadinovic A; Solomon NP
    Clin Linguist Phon; 2011 Apr; 25(4):302-20. PubMed ID: 21158501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantifying dysphonia severity using a spectral/cepstral-based acoustic index: Comparisons with auditory-perceptual judgements from the CAPE-V.
    Awan SN; Roy N; Jetté ME; Meltzner GS; Hillman RE
    Clin Linguist Phon; 2010 Sep; 24(9):742-58. PubMed ID: 20687828
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predictive value and discriminant capacity of cepstral- and spectral-based measures during continuous speech.
    Lowell SY; Colton RH; Kelley RT; Mizia SA
    J Voice; 2013 Jul; 27(4):393-400. PubMed ID: 23684735
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of Two Multiparameter Acoustic Indices of Dysphonia Severity: The Acoustic Voice Quality Index and Cepstral Spectral Index of Dysphonia.
    Lee JM; Roy N; Peterson E; Merrill RM
    J Voice; 2018 Jul; 32(4):515.e1-515.e13. PubMed ID: 28739333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward improved ecological validity in the acoustic measurement of overall voice quality: combining continuous speech and sustained vowels.
    Maryn Y; Corthals P; Van Cauwenberge P; Roy N; De Bodt M
    J Voice; 2010 Sep; 24(5):540-55. PubMed ID: 19883993
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Articulatory changes following treatment of muscle tension dysphonia: preliminary acoustic evidence.
    Dromey C; Nissen SL; Roy N; Merrill RM
    J Speech Lang Hear Res; 2008 Feb; 51(1):196-208. PubMed ID: 18230866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectral moments of the long-term average spectrum: sensitive indices of voice change after therapy?
    Tanner K; Roy N; Ash A; Buder EH
    J Voice; 2005 Jun; 19(2):211-22. PubMed ID: 15907436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acoustic analysis of four common voice diagnoses: moving toward disorder-specific assessment.
    Gillespie AI; Dastolfo C; Magid N; Gartner-Schmidt J
    J Voice; 2014 Sep; 28(5):582-8. PubMed ID: 24880672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring the relationship between spectral and cepstral measures of voice and the Voice Handicap Index (VHI).
    Awan SN; Roy N; Cohen SM
    J Voice; 2014 Jul; 28(4):430-9. PubMed ID: 24698884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Perceptual structure of adductor spasmodic dysphonia and its acoustic correlates.
    Cannito MP; Doiuchi M; Murry T; Woodson GE
    J Voice; 2012 Nov; 26(6):818.e5-13. PubMed ID: 23177751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectral, cepstral, and multivariate exploration of tracheoesophageal voice quality in continuous speech and sustained vowels.
    Maryn Y; Dick C; Vandenbruaene C; Vauterin T; Jacobs T
    Laryngoscope; 2009 Dec; 119(12):2384-94. PubMed ID: 19718753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Examination of Pre- and Posttreatment Acoustic Versus Auditory Perceptual Analyses of Voice Across Four Common Voice Disorders.
    Gillespie AI; Gartner-Schmidt J; Lewandowski A; Awan SN
    J Voice; 2018 Mar; 32(2):169-176. PubMed ID: 28688672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectral- and cepstral-based measures during continuous speech: capacity to distinguish dysphonia and consistency within a speaker.
    Lowell SY; Colton RH; Kelley RT; Hahn YC
    J Voice; 2011 Sep; 25(5):e223-32. PubMed ID: 20971612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Voice in Friedreich Ataxia.
    Vogel AP; Wardrop MI; Folker JE; Synofzik M; Corben LA; Delatycki MB; Awan SN
    J Voice; 2017 Mar; 31(2):243.e9-243.e19. PubMed ID: 27501923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectral moment analysis of unilateral vocal fold paralysis.
    Colton RH; Paseman A; Kelley RT; Stepp D; Casper JK
    J Voice; 2011 May; 25(3):330-6. PubMed ID: 20813498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.