These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 19340219)

  • 1. Observation of cw squeezed light at 1550 nm.
    Mehmet M; Steinlechner S; Eberle T; Vahlbruch H; Thüring A; Danzmann K; Schnabel R
    Opt Lett; 2009 Apr; 34(7):1060-2. PubMed ID: 19340219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Observation of Squeezed Light in the 2  μm Region.
    Mansell GL; McRae TG; Altin PA; Yap MJ; Ward RL; Slagmolen BJJ; Shaddock DA; McClelland DE
    Phys Rev Lett; 2018 May; 120(20):203603. PubMed ID: 29864323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous-wave nonclassical light with gigahertz squeezing bandwidth.
    Ast S; Samblowski A; Mehmet M; Steinlechner S; Eberle T; Schnabel R
    Opt Lett; 2012 Jun; 37(12):2367-9. PubMed ID: 22739910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-bandwidth squeezed light at 1550 nm from a compact monolithic PPKTP cavity.
    Ast S; Mehmet M; Schnabel R
    Opt Express; 2013 Jun; 21(11):13572-9. PubMed ID: 23736610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 13  dB squeezed vacuum states at 1550  nm from 12  mW external pump power at 775  nm.
    Schönbeck A; Thies F; Schnabel R
    Opt Lett; 2018 Jan; 43(1):110-113. PubMed ID: 29328207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous-wave squeezed states of light via 'up-down' self-phase modulation.
    Singh AP; Ast S; Mehmet M; Vahlbruch H; Schnabel R
    Opt Express; 2019 Aug; 27(16):22408-22418. PubMed ID: 31510535
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation of a stable low-frequency squeezed vacuum field with periodically poled KTiOPO4 at 1064 nm.
    Goda K; Mikhailov EE; Miyakawa O; Saraf S; Vass S; Weinstein A; Mavalvala N
    Opt Lett; 2008 Jan; 33(2):92-4. PubMed ID: 18197202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient homodyne measurement of picosecond squeezed pulses with pulse shaping technique.
    Eto Y; Koshio A; Ohshiro A; Sakurai J; Horie K; Hirano T; Sasaki M
    Opt Lett; 2011 Dec; 36(23):4653-5. PubMed ID: 22139273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3 dB squeezing by single-pass parametric amplification in a periodically poled KTiOPO4 crystal.
    Hirano T; Kotani K; Ishibashi T; Okude S; Kuwamoto T
    Opt Lett; 2005 Jul; 30(13):1722-4. PubMed ID: 16075550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Green bright squeezed light from a cw periodically poled KTP second harmonic generator.
    Andersen U; Buchhave P
    Opt Express; 2002 Aug; 10(17):887-92. PubMed ID: 19451942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Observation of squeezed light at 1.535 microm using a pulsed homodyne detector.
    Eto Y; Tajima T; Zhang Y; Hirano T
    Opt Lett; 2007 Jun; 32(12):1698-700. PubMed ID: 17572751
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB.
    Mehmet M; Ast S; Eberle T; Steinlechner S; Vahlbruch H; Schnabel R
    Opt Express; 2011 Dec; 19(25):25763-72. PubMed ID: 22273968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Squeezed States of Light for Future Gravitational Wave Detectors at a Wavelength of 1550 nm.
    Meylahn F; Willke B; Vahlbruch H
    Phys Rev Lett; 2022 Sep; 129(12):121103. PubMed ID: 36179187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generation of two-mode bright squeezed light using a noise-suppressed amplified diode laser.
    Zhang Y; Hayasaka K; Kasai K
    Opt Express; 2006 Dec; 14(26):13083-8. PubMed ID: 19532204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strongly squeezed states at 532 nm based on frequency up-conversion.
    Baune C; Gniesmer J; Schönbeck A; Vollmer CE; Fiurášek J; Schnabel R
    Opt Express; 2015 Jun; 23(12):16035-41. PubMed ID: 26193577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Independently programmable frequency-multiplexed phase-sensitive optical parametric amplification in the optical telecommunication band.
    Omi A; Hosaka A; Tomita M; Yamagishi Y; Wakui K; Niimura S; Takahashi K; Takeoka M; Kannari F
    Opt Express; 2021 Jul; 29(14):21683-21697. PubMed ID: 34265950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cavity enhanced parametric homodyne detection of a squeezed quantum comb.
    Tian Y; Sun X; Wang Y; Li Q; Tian L; Zheng Y
    Opt Lett; 2022 Feb; 47(3):533-536. PubMed ID: 35103674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation of a squeezed vacuum resonant on a rubidium D1 line with periodically poled KTiOPO4.
    Tanimura T; Akamatsu D; Yokoi Y; Furusawa A; Kozuma M
    Opt Lett; 2006 Aug; 31(15):2344-6. PubMed ID: 16832480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient generation of highly squeezed light with periodically poled MgO:LiNbO3.
    Masada G; Suzudo T; Satoh Y; Ishizuki H; Taira T; Furusawa A
    Opt Express; 2010 Jun; 18(12):13114-21. PubMed ID: 20588441
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation of multi-mode squeezed vacuum using pulse pumped fiber optical parametric amplifiers.
    Liu N; Liu Y; Li J; Yang L; Li X
    Opt Express; 2016 Feb; 24(3):2125-33. PubMed ID: 26906788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.