BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 19340243)

  • 21. Tests of a practical visible-NIR imaging Fourier transform spectrometer for biological and chemical fluorescence emission measurements.
    Li J; Chan RK; Wang X
    Opt Express; 2009 Nov; 17(23):21083-90. PubMed ID: 19997347
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optical, real-time monitoring of the glomerular filtration rate.
    Rabito CA; Chen Y; Schomacker KT; Modell MD
    Appl Opt; 2005 Oct; 44(28):5956-65. PubMed ID: 16231803
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ultra-sensitive fluorescence spectroscopy of isolated surface-adsorbed molecules using an optical nanofiber.
    Stiebeiner A; Rehband O; Garcia-Fernandez R; Rauschenbeutel A
    Opt Express; 2009 Nov; 17(24):21704-11. PubMed ID: 19997412
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spectrofluorometer based on acousto-optic tunable filters for rapid scanning and multicomponent sample analyses.
    Tran CD; Furlan RJ
    Anal Chem; 1993 Jul; 65(13):1675-81. PubMed ID: 7690197
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multicomponent fluorometric analysis using a fiber-optic probe.
    Bright FV; Litwiler KS
    Anal Chem; 1989 Jul; 61(14):1510-3. PubMed ID: 2757211
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dialysis-assisted fiber optic spectroscopy for in situ biomedical sensing.
    Blazkiewicz P; Blazkiewicz K; Verhaege A; Anissimov YG; Roberts MS; Zvyagin AV
    J Biomed Opt; 2006; 11(1):014033. PubMed ID: 16526910
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Instrumentation as a source of variability in the application of fluorescence spectroscopic devices for detecting cervical neoplasia.
    Pikkula BM; Shuhatovich O; Price RL; Serachitopol DM; Follen M; McKinnon N; MacAulay C; Richards-Kortum R; Lee JS; Atkinson EN; Cox DD
    J Biomed Opt; 2007; 12(3):034014. PubMed ID: 17614722
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CCD based fiber-optic spectrometer detection.
    Kapoor R
    Methods Mol Biol; 2009; 503():435-45. PubMed ID: 19151957
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Single molecule correlation spectroscopy in continuous flow mixers with zero-mode waveguides.
    Liao D; Galajda P; Riehn R; Ilic R; Puchalla JL; Yu HG; Craighead HG; Austin RH
    Opt Express; 2008 Jul; 16(14):10077-90. PubMed ID: 18607415
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A simple light-emitted diode-induced fluorescence detector using optical fibers and a charged coupled device for direct and indirect capillary electrophoresis methods.
    Arráez-Román D; Fernández-Sánchez JF; Cortacero-Ramírez S; Segura-Carretero A; Fernández-Gutiérrez A
    Electrophoresis; 2006 May; 27(9):1776-83. PubMed ID: 16645941
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ball lens coupled fiber-optic probe for depth-resolved spectroscopy of epithelial tissue.
    Schwarz RA; Arifler D; Chang SK; Pavlova I; Hussain IA; Mack V; Knight B; Richards-Kortum R; Gillenwater AM
    Opt Lett; 2005 May; 30(10):1159-61. PubMed ID: 15945140
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Polarization-coupling all-fiber acousto-optic tunable filter insensitive to fiber bend and physical contact.
    Lee KJ; Hwang IK; Park HC; Kim BY
    Opt Express; 2009 Apr; 17(8):6096-100. PubMed ID: 19365432
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spectral resolution enhancement of acousto-optic tunable filter by double-filtering.
    Zhang C; Zhang Z; Wang H; Yang Y
    Opt Express; 2008 Jul; 16(14):10234-9. PubMed ID: 18607431
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of a dual-path system for band-to-band registration of an acousto-optic tunable filter-based imaging spectrometer.
    Zhao H; Zhou P; Zhang Y; Wang Z; Shi S
    Opt Lett; 2013 Oct; 38(20):4120-3. PubMed ID: 24321938
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Acousto-optical tunable filter for combined wideband, spectral, and optical coherence microscopy.
    Machikhin AS; Pozhar VE; Viskovatykh AV; Burmak LI
    Appl Opt; 2015 Sep; 54(25):7508-13. PubMed ID: 26368870
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spectroscopy of 3D-trapped particles inside a hollow-core microstructured optical fiber.
    Rajapakse C; Wang F; Tang TC; Reece PJ; Leon-Saval SG; Argyros A
    Opt Express; 2012 May; 20(10):11232-40. PubMed ID: 22565745
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Investigation of tumor cell targeting of a dendrimer nanoparticle using a double-clad optical fiber probe.
    Thomas TP; Ye JY; Chang YC; Kotlyar A; Cao Z; Majoros IJ; Norris TB; Baker JR
    J Biomed Opt; 2008; 13(1):014024. PubMed ID: 18315382
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Fluorescence spectroscopy and imaging for optical biopsy].
    Li BH; Xie SS
    Guang Pu Xue Yu Guang Pu Fen Xi; 2005 Jul; 25(7):1083-7. PubMed ID: 16241061
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Design of a high-throughput and wide-bandwidth near-infrared acousto-optic tunable filter].
    Chen FF; Liu J; Liao CS; Zeng LB; Wu QS
    Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Jan; 33(1):278-82. PubMed ID: 23586273
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Simultaneous time- and wavelength-resolved fluorescence spectroscopy for near real-time tissue diagnosis.
    Sun Y; Liu R; Elson DS; Hollars CW; Jo JA; Park J; Sun Y; Marcu L
    Opt Lett; 2008 Mar; 33(6):630-2. PubMed ID: 18347733
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.