These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 19340243)

  • 81. Site-specific multipoint fluorescence measurement system with end-capped optical fibers.
    Song W; Moon S; Lee BC; Park CS; Kim DY; Kwon HS
    Appl Opt; 2011 Jul; 50(20):3529-37. PubMed ID: 21743563
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Characterization of a near-infrared laparoscopic hyperspectral imaging system for minimally invasive surgery.
    Zuzak KJ; Naik SC; Alexandrakis G; Hawkins D; Behbehani K; Livingston EH
    Anal Chem; 2007 Jun; 79(12):4709-15. PubMed ID: 17492839
    [TBL] [Abstract][Full Text] [Related]  

  • 83. The potential use of fiber optics for detection in microchip separation and miniaturized flow-cell systems.
    Caglar P; Landers JP
    J Capill Electrophor Microchip Technol; 2003; 8(3-4):69-76. PubMed ID: 14596338
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Using dyes and filters in a fluorescent imaging system.
    Bechtol KB; Hanzel DK; Liang BC
    Am Biotechnol Lab; 1994 Dec; 12(13):8-10. PubMed ID: 7527223
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Analysis on the Influence of Incident Light Angle on the Spatial Aberrations of Acousto-Optical Tunable Filter Imaging.
    Yu K; Zhao H
    Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806587
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Slow and fast light in optical fibers using acoustooptic coupling between two co-propagating modes.
    Haakestad MW; Skaar J
    Opt Express; 2009 Jan; 17(1):346-57. PubMed ID: 19129903
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Partial least squares based decomposition of five spectrally overlapping factors.
    Pomerleau-Dalcourt N; Weersink R; Lilge L
    Appl Spectrosc; 2005 Nov; 59(11):1406-14. PubMed ID: 16316520
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Note: Comparison between a prism-based and an acousto-optic tunable filter-based spectrometer for diffusive media.
    Farina A; Bargigia I; Taroni P; Pifferi A
    Rev Sci Instrum; 2013 Jan; 84(1):016109. PubMed ID: 23387715
    [TBL] [Abstract][Full Text] [Related]  

  • 89. PDMS 2D optical lens integrated with microfluidic channels: principle and characterization.
    Camou S; Fujita H; Fujii T
    Lab Chip; 2003 Feb; 3(1):40-5. PubMed ID: 15100804
    [TBL] [Abstract][Full Text] [Related]  

  • 90. [Fiber-optic luminescent probes for biomedical research].
    Barskiĭ IIa; Papaian GV; Asanov ON; Krupenchuk AI; Lezhnev KK; Marinichev VL; Trapeznikov AV
    Fiziol Zh Im I M Sechenova; 1995 Jun; 81(6):142-7. PubMed ID: 8845872
    [No Abstract]   [Full Text] [Related]  

  • 91. Fluorescence photon measurements from single quantum dots on an optical nanofiber.
    Yalla R; Nayak KP; Hakuta K
    Opt Express; 2012 Jan; 20(3):2932-41. PubMed ID: 22330531
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Laser-induced fluorescence detection on multichannel electrophoretic microchips using microprocessor-embedded acousto-optic laser beam scanning.
    Huang Z; Jin L; Sanders JC; Zheng Y; Dunsmoor C; Tian H; Landers JP
    IEEE Trans Biomed Eng; 2002 Aug; 49(8):859-66. PubMed ID: 12148825
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Development of a broadband picosecond infrared spectrometer and its incorporation into an existing ultrafast time-resolved resonance Raman, UV/visible, and fluorescence spectroscopic apparatus.
    Towrie M; Grills DC; Dyer J; Weinstein JA; Matousek P; Barton R; Bailey PD; Subramaniam N; Kwok WM; Ma C; Phillips D; Parker AW; George MW
    Appl Spectrosc; 2003 Apr; 57(4):367-80. PubMed ID: 14658632
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Fourier fluorescence spectrometer for excitation emission matrix measurement.
    Peng L; Gardecki JA; Bouma BE; Tearney GJ
    Opt Express; 2008 Jul; 16(14):10493-500. PubMed ID: 18607462
    [TBL] [Abstract][Full Text] [Related]  

  • 95. A simple and compact fluorescence detection system for capillary electrophoresis and its application to food analysis.
    Zhai H; Yuan K; Yu X; Chen Z; Liu Z; Su Z
    Electrophoresis; 2015 Oct; 36(20):2509-15. PubMed ID: 26109527
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Depth-sensitive reflectance measurements using obliquely oriented fiber probes.
    Wang AM; Bender JE; Pfefer J; Utzinger U; Drezek RA
    J Biomed Opt; 2005; 10(4):44017. PubMed ID: 16178650
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Limits of detection for an AOTF-FFP spectrometer in ICP atomic emission spectroscopy.
    Baldwin DP; Zamzow DS
    Talanta; 1997 Dec; 45(2):229-35. PubMed ID: 18966997
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Determination of monomethylhydrazine with a high-throughput, all-fiber near-infrared spectrometer based on an integrated acoustooptic tunable filter and an erbium-doped fiber amplifier.
    Tran CD; Gao GH
    Anal Chem; 1997 Apr; 69(7):1461-4. PubMed ID: 9105182
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Near-infrared emission spectrometry based on an acousto-optical tunable filter.
    Gonzaga FB; Pasquini C
    Anal Chem; 2005 Feb; 77(4):1046-54. PubMed ID: 15858984
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Acousto-optic tunable filter sidelobe analysis and reduction with telecentric confocal optics.
    Suhre DR; Gupta N
    Appl Opt; 2005 Sep; 44(27):5797-801. PubMed ID: 16201445
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.